Charm CPV in decays with neutrals

Marko Starič

Jožef Stefan Institute, Ljubljana

Towards the Ultimate Precision in Flavour Physics

M. Starič (IJS)

Charm CPV in decays with neutrals

IPPP Durham, April 2019

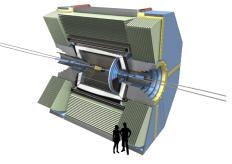
I will purely focus on time-integrated measurements because in many decays with neutrals the decay vertex is not possible to reconstruct. I will also limit my presentation to prospects for Belle II measurements.

- The Belle II experiment
- Flavor tagging
- How the systematics is controlled
- Prospects at Belle II
 - $D^0 \rightarrow K^0_s K^0_s$
 - $D^+ \rightarrow \pi^+ \pi^0$
 - $D^{\rm 0} \to \phi \gamma, \rho^{\rm 0} \gamma$
 - other decays modes

More details

E. Kou, P. Urquijo eds., The Belle II Physics Book, to be published in Prog. Theor. Exp. Phys.

M. Starič (IJS)


🚰 The Belle II experiment

• Successor of Belle experiment (KEK, Tsukuba, Japan)

SuperKEKB accelerator

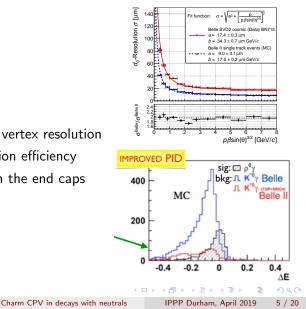
- upgraded KEKB
- luminosity $40 \times KEKB$ $(8 \times 10^{35} \text{cm}^{-2} \text{s}^{-1})$
- nano-beam optics M. Starič (IJS)

Belle II detector

- upgraded Belle detector
- majority of components replaced

Charm CPV in decays with neutrals

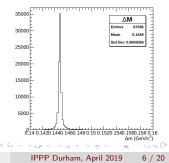
IPPP Durham, April 2019 3 / 20


🚰 The Belle II detector

- Vertex detector (replaced completely)
 - 2 DEPFET layers + 4 DSSD layers
 - smaller inner radius, larger outer radius
 - \rightarrow two-times better vertex resolution
 - \rightarrow improved efficiency for slow pions and ${\it K_S}$
- Central drift chamber (replaced completely)
 - smaller cells, larger outer radius
 - \rightarrow improved momentum resolution and dE/dx
- Hadron ID (replaced completely)
 - TOP (barrel) and aerogel RICH (forward)
 - \rightarrow improved hadron ID
 - \rightarrow less material in front of calorimeter
- Electromagnetic calorimeter (new front-end electronics)
 - waveform sampling technique to cope with increased beam background
- K-long and muon detector (partially replaced, new front-end electronics)
 - RPC's in end-caps and first two layers of barrel replaced with scintillator counters to cope with increased neutron background

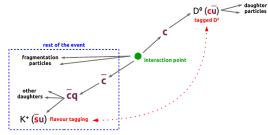
Belle II performance improvements

Improvements w.r.t Belle


- primary and secondary vertex resolution
- K_S and π^0 reconstruction efficiency
- hadron and muon ID in the end caps
- K/π separation

Gilden method Flavor tagging: golden method

Golden method


- selecting D^0 from $D^{*+}
 ightarrow D^0 \pi^+_{
 m slow}$
 - flavor is tagged with the charge of $\pi_{\rm slow}$
 - observables:
 - D⁰ invariant mass
 - D^{*+} mass difference: $\Delta M \equiv m(D^{*+}) m(D^0)$
- \bullet to select D^0 from $c\overline{c}$ events: $p_{D^{*+}}^{CMS}>2.5~GeV/c$
- provides good background rejection power because of small energy release
 - ΔM resolution at Belle II: $\sim 180~{
 m keV/c^2}$
 - a factor of two better than at Belle or BaBar
- typical reconstruction efficiency: 80%
- typical mistagging rate: 0.2%

Generation Flavor tagging: ROE method

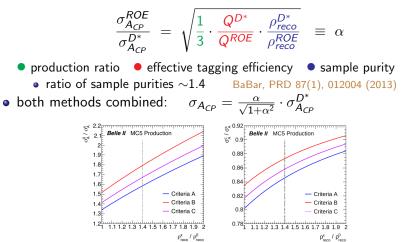
Rest-of-event (ROE) method

• New method with the goal of increasing tagged sample size by adding D^0 mesons not reconstructed in D^{*+} decays

- reconstruct D^0 and look at the rest-of-event
 - the events with only one K^{\pm} are selected
 - flavor is tagged with the charge of a kaon

• to select D^0 from $c\overline{c}$ events: $p_{D^0}^{CMS} > 2.5 \ GeV/c$

Generation Flavor tagging: method comparison


Flavour-tagging	Produced D^0	Mistagging		Efficiency
Method	N_{D^0}	ω	ϵ	$Q = \epsilon (1 - 2\omega)^2$
D^*	1	0.2%	80%	79.7%
ROE - criteria A	3	13.3%	26.7%	20.1%
ROE - criteria B	3	9.8%	16.8%	13.7%
ROE - criteria C	3	4.9%	15.9%	15.7%

comparison of tagging methods

- About 4 times lower tagging efficiency of ROE method is compensated by 3 times higher non-D^{*+} production rate
- Combining both we can almost double the tagged samples
 - however, mistagging rate is higher and also sample purity is lower

Impact on precision of time-integrated measurements

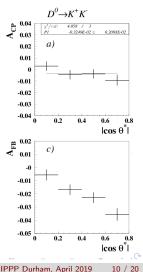
• The ratio of A_{CP} statistical uncertainties can be written as

ightarrow expect to increase sensitivity by 15% if combining both methods

M. Starič (IJS)

Time-integrated measurements (A_{CP})

• Asymmetry in time-integrated decay rates of $D^0 \to f$ and $\overline{D}^0 \to \overline{f}$

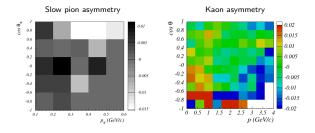

$$A_{CP}^{f} = \frac{\Gamma(D^{0} \to f) - \Gamma(\overline{D}^{0} \to \overline{f})}{\Gamma(D^{0} \to f) + \Gamma(\overline{D}^{0} \to \overline{f})}$$

Raw asymmetry

$$A_{\mathrm{raw}} = \frac{N - \overline{N}}{N + \overline{N}} = A_D + A_{\epsilon}^f + A_{CP}^f$$

- A_D production asymmetry
- A_{ϵ}^{f} asymmetry in efficiencies
- Production asymmetry at B-factory
 - odd function of CMS polar angle $A_D \equiv A_{FB}(\cos\theta^*)$
 - can easily be disentangled

$$A_{CP} = \frac{A_{raw}^{cor}(\cos\theta^*) + A_{raw}^{raw}(-\cos\theta^*)}{2}$$
$$A_{FB} = \frac{A_{raw}^{cor}(\cos\theta^*) - A_{raw}^{cor}(-\cos\theta^*)}{2}$$


M. Starič (IJS)

$\overset{oldsymbol{G}}{=}$ Detection asymmetries \mathcal{A}^f_ϵ

- Asymmetries in detection efficiencies can be measured with sufficient precision using CF decays (CPV is very unlikely)
 - must be performed in bins of relevant phase-spaces
 - requires production asymmetries to be known

ightarrow at B-factory: $A_D \equiv A_{FB}(cos \theta^*)$

- Slow pions: from tagged and untagged $D^0 o K^- \pi^+$ decays
- Kaons: from decays $D^0 o K^- \pi^+$ and $D^+_{s} o \phi \pi^+$
- Pions: from decays $D^+ o K^- \pi^+ \pi^+$ and $D^0 o K^- \pi^+ \pi^0$

M. Starič (IJS)

Charm CPV in decays with neutrals

IPPP Durham, April 2019

\mathcal{A} Prospects for A_{CP} at Belle II

- Belle measurements extrapolated to 50 ab^{-1}
- Systematic uncertainties primarily scale with integrated luminosity, with an exception of modes with K_s^0
 - asymmetry of K^0/\overline{K}^0 interactions in the material: $\sigma_{\rm ired}\approx 0.02\%$ PRD 84, 111501 (2011)
- Extrapolation:

$$\sigma_{BelleII} = \sqrt{(\sigma_{stat}^2 + \sigma_{sys}^2) \frac{\mathcal{L}_{Belle}}{50 \text{ ab}^{-1}} + \sigma_{ired}^2}$$

Detector performance improvements are not included in the extrapolation as well as possible sensitivity increase obtained with additional ROE tagging.

$\square D^0 \rightarrow K^0_s K^0_s$

- $\bullet\,$ Promising channel since CPV can be as large as 1% in SM
- Belle measurement (921 fb⁻¹), PRL 119, 171801 (2017)

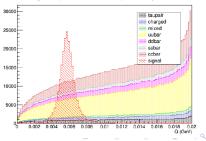
 $A_{CP}(D^0 \to K_s^0 K_s^0) = (-0.02 \pm 1.53 \pm 0.17)\%$

- significantly more precise than LHCb at 3 $\rm fb^{-1}$
- Since final state includes two K_s^0 the only detection asymmetry comes from tagging: $A_{\text{raw}} = A_{CP} + A_{FB} + A_{\epsilon}^{\pi_{slow}}$
 - can be corrected for by using tagged and untagged $D^0 o K^- \pi^+$ decays
- Other option (used in Belle measurement): normalize to $D^0 o K_s^0 \pi^0$:
 - $A_{CP}(K_s^0 K_s^0) = A_{raw}(K_s^0 K_s^0) A_{raw}(K_s^0 \pi^0) + A_{CP}(K_s^0 \pi^0)$
 - CPV due to K^0 mixing (-0.34%) must be subtracted from $A_{CP}(K_s^0 \pi^0)$
 - $\sigma_{\rm ired} \approx 0.02\%$ due to ${\cal K}^0/{\overline {\cal K}}^0$ material interactions comes in
- Extrapolating Belle sensitivity to 50 ab⁻¹

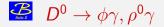
$$\sigma_{A_{CP}} \sim 0.21\%$$

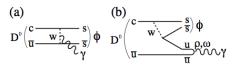
▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの

- Smoking gun for NP since CPV in SM is tiny in this mode
- Belle measurement (921 fb⁻¹), PRD 97, 011101(R) (2018)


 $A_{CP}(D^0 \to \pi^+ \pi^0) = (2.31 \pm 1.24 \pm 0.23)\%$

- a MC study performed in order to estimate Belle II precision
 - with MC sample corresponding to 50 ab^{-1}
 - using D^+ from $D^{*+}
 ightarrow D^+ \pi^0$ to reduce background
 - · selection efficiency and background rejection found similar to Belle


signal peak is multiplied by 10

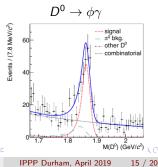

Extrapolating Belle sensitivity to 50 ab^{-1}

$$\sigma_{A_{CP}} \sim 0.17\%$$

IPPP Durham, April 2019

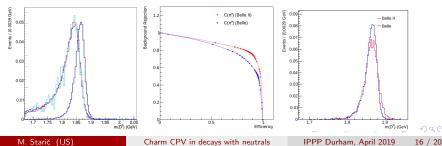
 Direct CPV in radiative decays can be enhanced by chromomagnetic dipole operators, G. Isidori and J. F. Kamenik, PRL 109, 171801 (2012)

•
$$D^0 \rightarrow \phi \gamma$$
: A_{CP} up to 2%


•
$$D^0 o
ho^0 \gamma$$
: A_{CP} up to 10%

• Belle, 943 fb⁻¹, PRL 118, 051801 (2017)

•
$$A_{CP}(D^0 \to \phi \gamma) = (-9.4 \pm 6.6 \pm 0.1)\%$$


•
$$A_{CP}(D^0 \to \rho^0 \gamma) = (5.6 \pm 15.2 \pm 0.6)\%$$

 \rightarrow consistent with no CPV

- Background rejection and mass resolution studied by MC
- The dominant background arises from $D^0 o V \pi^0$ ($V \equiv \phi,
 ho^0$)
 - $\bullet\,$ Belle developed a dedicated π^0 veto employing a neural network
 - MC indicates that this veto would perform similarly at Belle II
- Invariant mass resolution also found similar
 - \rightarrow can extrapolate Belle measurements by luminosity scaling only
- Sensitivity at 50 ab⁻¹
 - $A_{CP}(D^0 \rightarrow \phi \gamma)$: 0.9%
 - $A_{CP}(D^0 \rightarrow \rho^0 \gamma)$: 2.1%

ACP sensitivities at Belle II (decays with neutrals)

mode	\mathcal{L} (fb ⁻¹)	A _{CP} (%)	Belle II at 50 ab^{-1}
$D^0 o \pi^0 \pi^0$	966	$-0.03 \pm 0.64 \pm 0.10$	±0.09
$D^0 ightarrow K^0_S K^0_S$	921	$-0.02\pm1.53\pm0.02\pm0.17$	± 0.21
$D^0 o K^0_s \pi^0$	966	$-0.21 \pm 0.16 \pm 0.07$	± 0.03
$D^0 o K^0_s \eta$	791	$+0.54 \pm 0.51 \pm 0.16$	± 0.07
$D^0 o K^0_s \eta'$	791	$+0.98 \pm 0.67 \pm 0.14$	± 0.09
$D^0 o \pi^+ \pi^- \pi^0$	532	$+0.43\pm1.30$	± 0.13
$D^0 o K^+ \pi^- \pi^0$	281	-0.60 ± 5.30	± 0.40
$D^0 o \phi \gamma$	943	$-9.4\pm6.6\pm0.1$	± 0.90
$D^0 o ho^0 \gamma$	943	$+5.6 \pm 15.2 \pm 0.6$	± 2.10
$D^0 o \overline{K}^{*0} \gamma$	943	$-0.3 \pm 2.0 \pm 0.04$	±0.27
$D^+ o \eta \pi^+$	791	$+1.74 \pm 1.13 \pm 0.19$	± 0.14
$D^+ o \eta' \pi^+$	791	$-0.12 \pm 1.12 \pm 0.17$	± 0.14
$D^+ o K^0_s \pi^+$	977	$-0.36 \pm 0.09 \pm 0.07$	± 0.03
$D^+ ightarrow K^0_s K^+$	977	$-0.25 \pm 0.28 \pm 0.14$	± 0.05
$D^+ o \pi^+ \pi^0$	921	$+2.31 \pm 1.24 \pm 0.23$	± 0.17
$D^+_s o K^0_s \pi^+$	673	$+5.45 \pm 2.50 \pm 0.33$	±0.29
$D^+_s o K^0_s K^+$	673	$+0.12\pm 0.36\pm 0.22$	± 0.05

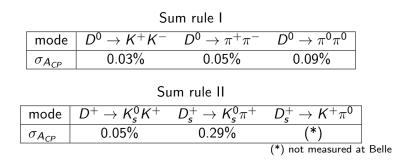
M. Starič (IJS)

Charm CPV in decays with neutrals

・ロト ・四ト ・ヨト ・ヨト IPPP Durham, April 2019

3

- Perspectives for CPV in decays with neutrals have been discussed.
- We focused on the time-integrated measurements at Belle II.
- Initial MC studies have indicated that the performance at Belle II will stay similar to Belle, therefore a straightforward extrapolation by luminosity scaling could already give reasonable sensitivity estimates.
- The sensitivities in singly Cabibbo suppressed decays are found typically between 0.1% and 0.2%.
- Most measurements will still be dominated by statistics uncertainties.


A B F A B F

mode	\mathcal{L} (fb $^{-1}$)	A _{CP} (%)	Belle II at 50 ab^{-1}
$D^0 ightarrow K^+ K^-$	976	$-0.32 \pm 0.21 \pm 0.09$	±0.03
$D^0 o \pi^+\pi^-$	976	$+0.55 \pm 0.36 \pm 0.09$	± 0.05
$D^0 ightarrow K^+ \pi^- \pi^+ \pi^-$	281	-1.80 ± 4.40	±0.33
$D^+ o \phi \pi^+$	955	$+0.51 \pm 0.28 \pm 0.05$	±0.04

IPPP Durham, April 2019

Backup: Sum rules (sensitivitis at Belle II)

• $D^+_s
ightarrow K^+ \pi^0$ not measured at Belle

• simple scaling by Br ratio of $D_s^+ \to K_s^0 \pi^+$ and $D_s^+ \to K^+ \pi^0$, and assuming similar detection efficiencies gives $\sigma_{A_{CP}} \sim 0.4\%$