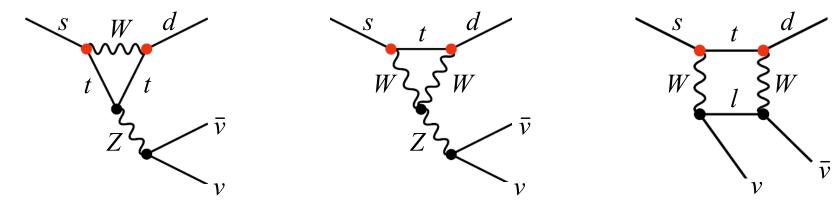
$K \rightarrow \pi vv$ experiments: Status and prospects


Towards the Ultimate Precision in Flavor Physics Institute for Particle Physics Phenomenology Durham UK, 3 April 2019

Matthew Moulson INFN Frascati

$K \to \pi \nu \bar{\nu}$ in the Standard Model

FCNC processes dominated by Z-penguin and box amplitudes:

Extremely rare decays with rates very precisely predicted in SM:

- Hard GIM mechanism + pattern of CKM suppression $(V_{ts}^*V_{td})$
- No long-distance contributions from amplitudes with intermediate photons
- Hadronic matrix element obtained from $BR(K_{e3})$ via isospin rotation

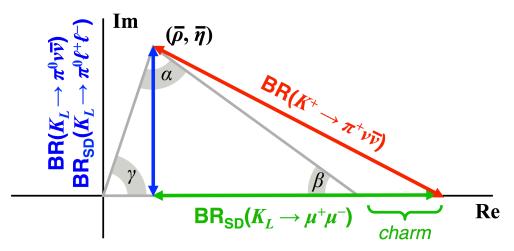
	SM predicted rates Buras et al, JHEP 1511*	Experimental status
$K^+\!\!\to\pi^+ v \overline{v}$	$BR = (8.4 \pm 1.0) \times 10^{-11}$	BR = (17.3 $^{+11.5}_{-10.5}$) × 10 ⁻¹¹ Stopped K^+ , 7 events observed BNL 787/949, PRD79 (2009)
$K_L \! o \pi^0 v \overline{v}$	BR = $(3.4 \pm 0.6) \times 10^{-11}$	BR < 300 × 10 ⁻¹¹ 90%CL KOTO, PRL122 (2019)

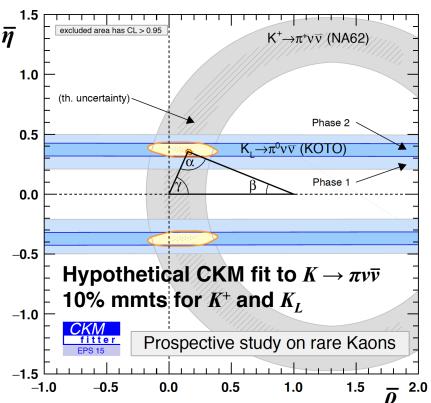
^{*} Tree-level determinations of CKM matrix elements

$K \to \pi \nu \bar{\nu}$ and the unitarity triangle

Dominant uncertainties for SM BRs are from CKM matrix elements

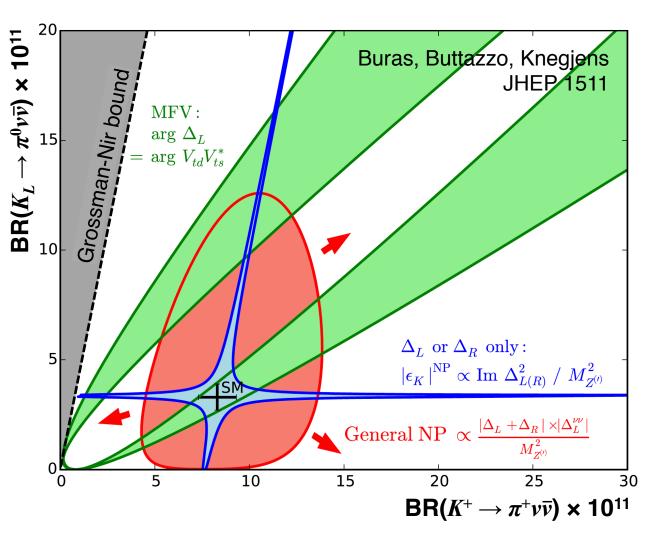
$$BR(K^+ \to \pi^+ \nu \bar{\nu}) = (8.39 \pm 0.30) \times 10^{-11} \cdot \left[\frac{|V_{cb}|}{0.0407} \right]^{2.8} \cdot \left[\frac{\gamma}{73.2^{\circ}} \right]^{0.74}$$


Buras et al., JHEP 1511


$$BR(K_L \to \pi^0 v \bar{v}) = (3.36 \pm 0.05) \times 10^{-11} \cdot \left[\frac{|V_{ub}|}{3.88 \times 10^{-3}} \right]^2 \cdot \left[\frac{|V_{cb}|}{0.0407} \right]^2 \cdot \left[\frac{\sin \gamma}{\sin 73.2^{\circ}} \right]^2$$

Intrinsic theory uncertainties ~ few percent

Measuring both K^+ and K_L BRs can determine the CKM unitarity triangle independently from B inputs


Overconstrain CKM matrix → reveal NP?

$K \rightarrow \pi \nu \bar{\nu}$ and new physics

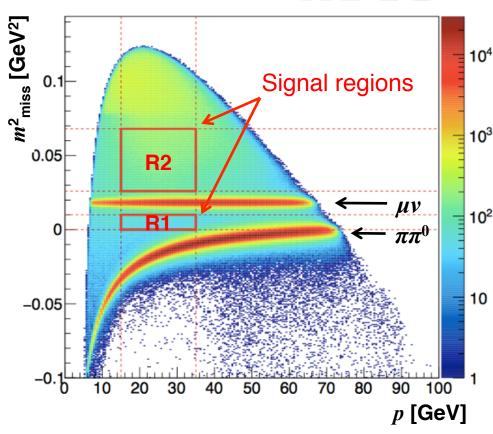
New physics affects BRs differently for K^+ and K_L channels Measurements of both can discriminate among NP scenarios

- Models with CKM-like flavor structure
 - -Models with MFV
- Models with new flavorviolating interactions in which either LH or RH couplings dominate
 - −*Z*/*Z*′ models with pure LH/RH couplings
 - Littlest Higgs withT parity
- Models without above constraints
 - -Randall-Sundrum

The NA62 experiment at the CERN SPS

$K^+ \rightarrow \pi^+ \nu \bar{\nu}$ with decay in flight

Signal:

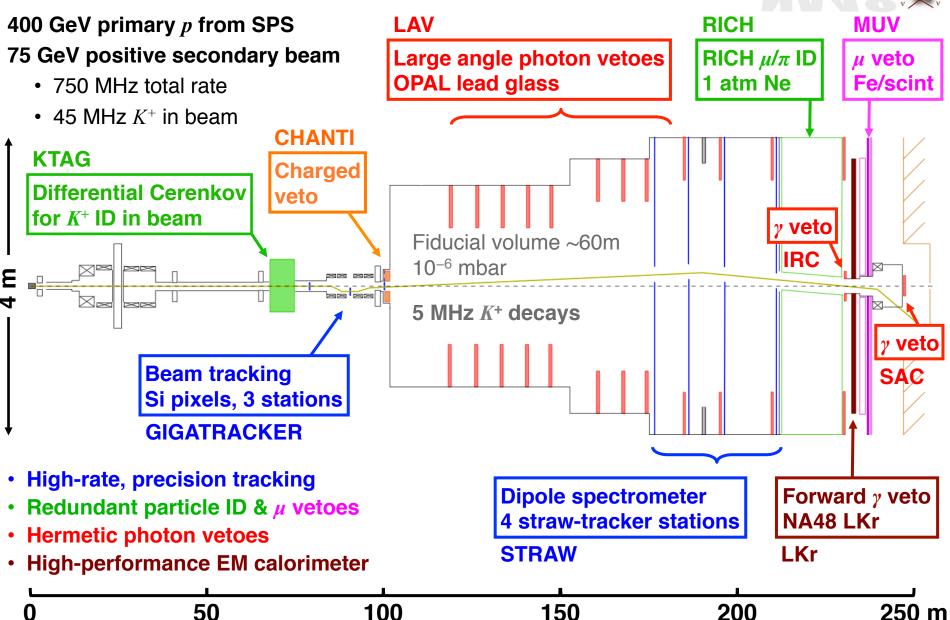

BR =
$$(8.4 \pm 1.0) \times 10^{-11}$$
 K^+

* K track in

- π track out
- No other particles in final state
- $M^2_{\text{miss}} = (p_K p_{\pi})^2$

Main backgrounds:

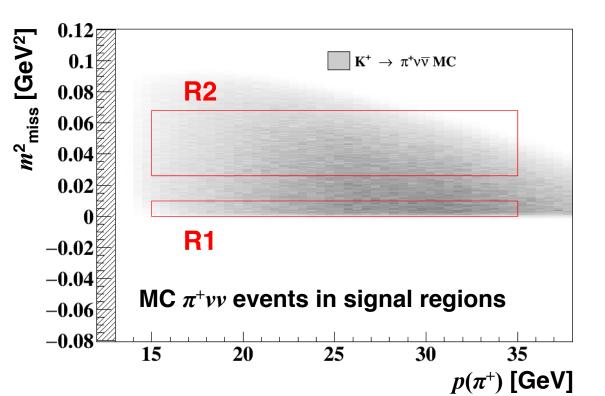
$$K^{+} \rightarrow \mu^{+} \nu(\gamma)$$
 BR = 63.5%
 $K^{+} \rightarrow \pi^{+} \pi^{0}(\gamma)$ BR = 20.7%



Selection criteria:

- K⁺ beam identification
- Single track in final state
- π^+ identification ($\varepsilon_u \sim 1 \times 10^{-8}$)
- γ rejection ($\varepsilon_{\pi 0} \sim 3 \times 10^{-8}$)

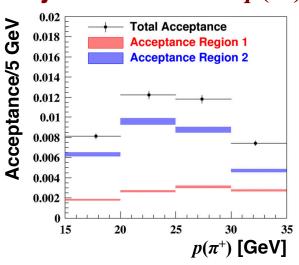
The NA62 experiment at the SPS



$K^+ \to \pi^+ \nu \bar{\nu}$ sensitivity, 2016 data

2014-2015 Pilot/commissioning runs

2016 Commissioning + 1st physics run 40% of nominal intensity



First result presented in March 2018 PLB 791 (2019) 156

Signal acceptance 4.0%

- 15 GeV $< p(\pi^+) < 35$ GeV
- $m^2_{\rm miss}$ cuts to define R1, R2

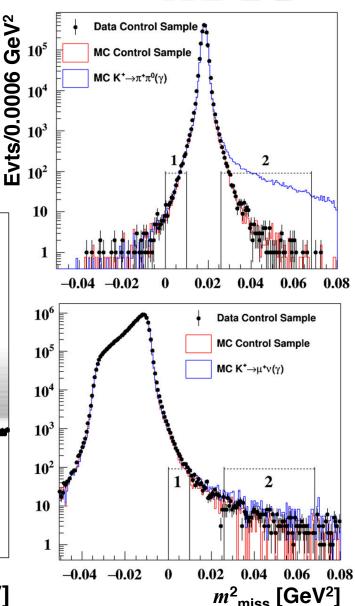
Analysis in 4 bins of $p(\pi^+)$

Normalization to $K \rightarrow \pi \pi^0$

• 1.2 × 10¹¹ K⁺ decays recorded

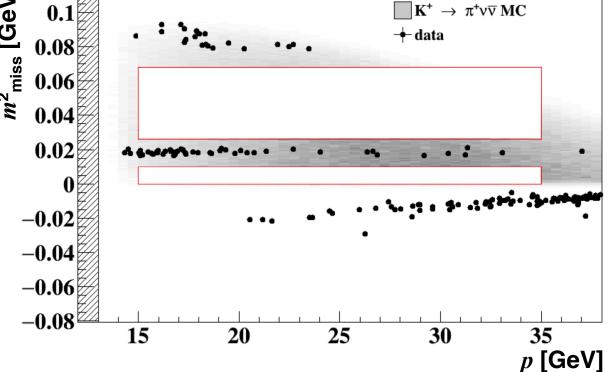
SES = $(3.15 \pm 0.01_{stat} \pm 0.24_{sys}) \times 10^{-10}$

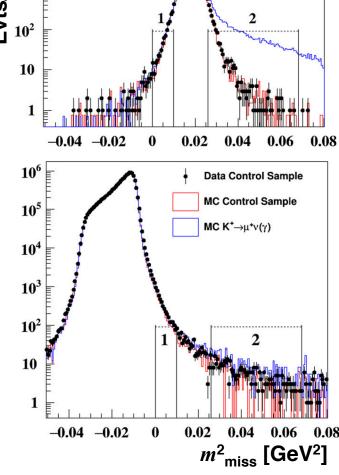
Expected signal events: $0.267 \pm 0.001_{stat} \pm 0.020_{sys} \pm 0.032_{ext}$


Background estimation

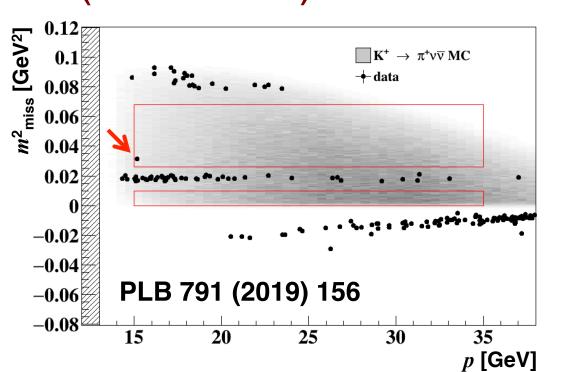
Estimate $K \to \mu \nu$ and $K \to \pi \pi^0$ background in signal regions R1, R2 from tails in m^2_{miss} distribution for control samples:

- $K \rightarrow \mu \nu$: 1-track selection like $\pi \nu \nu$ but with μ PID
- $K \to \pi\pi^0$: 1-track selection with reconstructed π^0





Background estimate validation


	Region	Expected	Found	Data Control Sample MC Control Sample
	CR(μν)	1.02 ± 0.16	2	- L
	CR(ππ ⁰ 1)	$0.52 \pm 0.08 \pm 0.03$	0	9000 10^4 MC K* $\rightarrow \pi^*\pi^0(\gamma)$
	$CR(\pi\pi^0 2)$	$0.94 \pm 0.14 \pm 0.05$	1	
miss [GeV ²]	0.12 0.1 0.08	□ K ⁺ + data	→ π ⁺ ν⊽ MC a	-0.04 -0.02 0 0.02 0.04
Ξ	0.06			10 ⁶ Data Cont

$BR(K^+ \rightarrow \pi^+ \nu \nu)$ from 2016 data

2016 data $-1.21 \times 10^{11} K^+$ decays SES = $(3.15 \pm 0.24) \times 10^{-10}$ Expected signal 0.267 \pm 0.038 Expected background 0.15 \pm 0.09 1 event observed in R2

BR(
$$K^+ \to \pi^+ \nu \nu$$
)
< 14 × 10⁻¹⁰ (95%CL)
< 10 × 10⁻¹⁰ (90%CL)
= 28⁺⁴⁴₋₂₃ × 10⁻¹¹ (68% CL)

Background source	Expected events R1 + R2	
$K^+ o \pi^+ vv$ (SM)	$0.267 \pm 0.001_{\text{stat}} \pm 0.029_{\text{sys}} \pm 0.032_{\text{ext}}$	
$K^{\scriptscriptstyle +} ightarrow \pi^{\scriptscriptstyle +} \pi^0 (\gamma_{IB})$	$0.064 \pm 0.007_{\text{stat}} \pm 0.006_{\text{sys}}$	
$K^+ \rightarrow \mu^+ \nu (\gamma_{IB})$	$0.020 \pm 0.003_{\text{stat}} \pm 0.003_{\text{sys}}$	
$K^+ \rightarrow \pi^+ \pi^- e^+ v$	$0.018^{+0.024}_{-0.017 \text{ stat}} \pm 0.009_{\text{sys}}$	
$K^+ \longrightarrow \pi^+\pi^-\pi^+$	$0.002 \pm 0.001_{\text{stat}} \pm 0.002_{\text{sys}}$	
Upstream background	$0.050 \pm {}^{+0.090}_{-0.030}$	
Total background	$0.15 \pm 0.09_{stat} \pm 0.01_{svs}$	

NA62 status and timeline

2016 Commissioning + 1st physics run

First result presented in March 2018

1 event observed

 $BR(K^+ \to \pi^+ \nu \nu) < 14 \times 10^{-10} (95\%CL)$

2017 Physics run (23 weeks at 60% nominal intensity)

Better collection efficiency for physics data

 $3 \times 10^{12} K^+$ decays recorded (> 20x more than 2016)

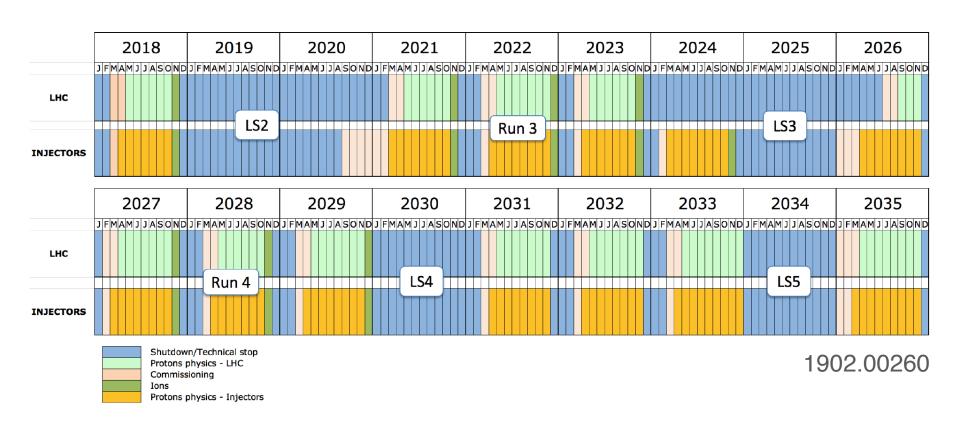
2018 Physics run (31 weeks at 60% nominal intensity)

Better shielding of upstream background

 $5 \times 10^{12} K^+$ decays recorded (> 40x more than 2016)

2019-2020 LS2 (LHC Long Shutdown 2)

Analysis of 2017-2018 data in progress


- Potential sensitivity = 15-20 SM $K^+ \rightarrow \pi^+ \nu \nu$ events
- Solid extrapolation to ultimate sensitivity of NA62 achievable after LS2

Fixed target runs at the SPS

2021 (Run 3): Intention to continue data taking with NA62

- Measure BR($K^+ \to \pi^+ \nu \nu$) with ultimate sensitivity
- Search for hidden particles in beam-dump mode

2026 (Run 4): Turn focus to measurement of BR($K_L \to \pi^0 \nu \nu$) $\rightarrow K_L EVER$

$K_L \to \pi^0 \nu \bar{\nu}$: Experimental issues

Essential signature: 2γ with unbalanced p_{\perp} + nothing else!

All other K_L decays have ≥ 2 extra γ s or ≥ 2 tracks to veto

Exception: $K_L \rightarrow \gamma \gamma$, but not a big problem since $p_{\perp} = 0$

K_L momentum generally is not known $M(\gamma\gamma) = m(\pi^0)$ is the only sharp kinematic constraint

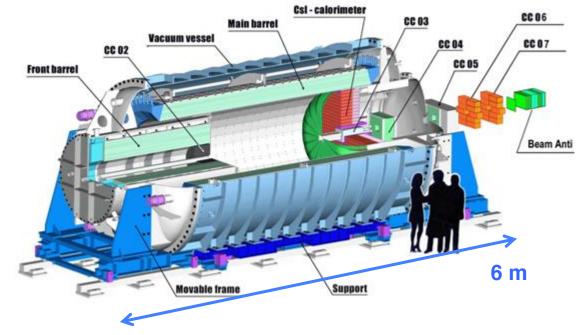
Generally used to reconstruct vertex position

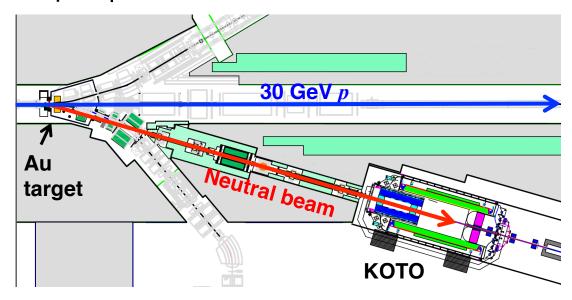
$m_{\pi^0}^2 = 2E_1 E_2 (1 - \cos \theta)$ $R_1 \approx R_2 \equiv R = \frac{d\sqrt{E_1 E_2}}{m_{\pi^0}}$

Main backgrounds:

Mode	BR	Methods to suppress/reject
$K_L ightarrow \pi^0 \pi^0$	8.64×10^{-4}	γ vetoes, π^0 vertex, p_\perp
$K_L o \pi^0 \pi^0 \pi^0$	19.52%	γ vetoes, π^0 vertex, p_\perp
$K_L \to \pi e v(\gamma)$	40.55%	Charged particle vetoes, π ID, γ vetoes
$\Lambda \to \pi^0 n$		Beamline length, p_{\perp}
$n + gas \rightarrow X\pi^0$		High vacuum decay region

$K_L \to \pi^0 \nu \bar{\nu}$ at J-PARC

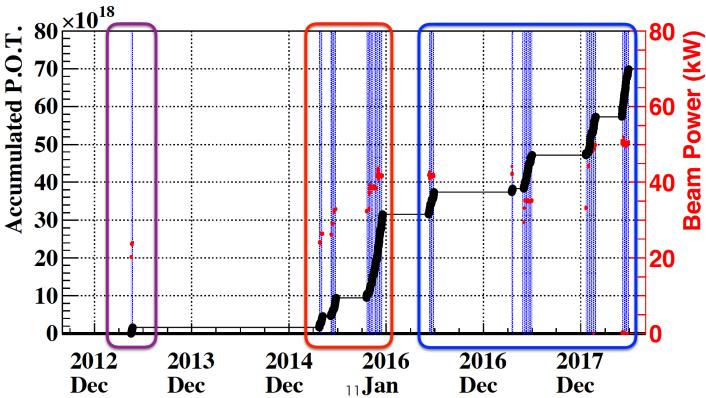



Primary beam: 30 GeV p100 kW = 1.2 × 10¹⁴ p/5.2 s


Neutral beam (16°)

 $\langle p(K_L) \rangle = 2.1 \text{ GeV}$

50% of K_L have 0.7-2.4 GeV 8 µsr "pencil" beam



KOTO status and timeline

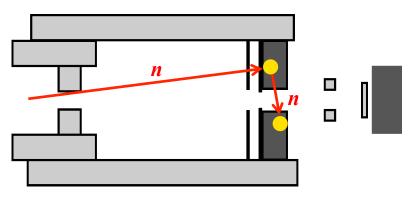
2013 pilot run (100 hrs)

$$BR(K_L \to \pi^0 vv) \le 5.1 \times 10^{-8}$$
 (90%CL)

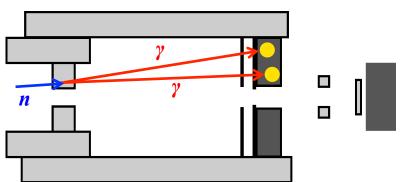
2015 run (current result)

- Reached 40 kW slow-extracted beam power
- 3×10^{19} pot collected

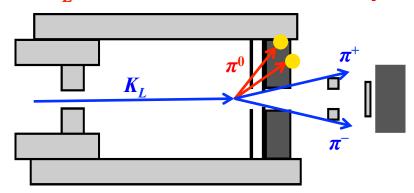
2016-2018


- Reached 50 kW beam power
- 4×10^{19} pot collected
- With all 2015-2018 data, expected sensitivity below Grossman-Nir bound

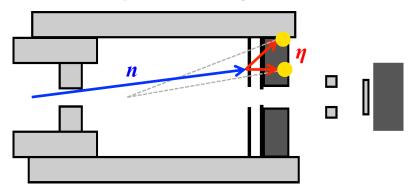
Background rejection


Lessons from 2013 run help to reject backgrounds other than $K_L \to \pi^0 \pi^0$

1. Hadron clusters on Csl


- Control sample with Al plate in beam
- Cluster and pulse shape analysis

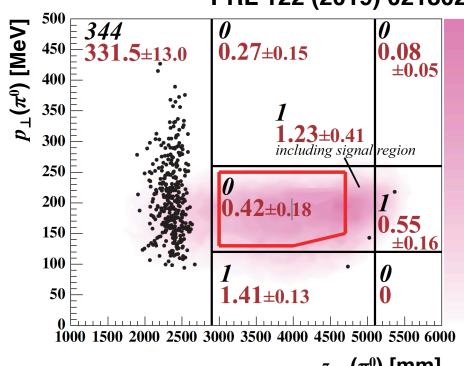
3. $n \rightarrow X\pi^0$ on collar (NCC)


- Beam profile monitor for better alignment
- Thinner vacuum window

2. $K_L \rightarrow \pi^+\pi^-\pi^0$ with $\pi^+\pi^-$ escape

 New charged-particle vetoes lining beam exit

4. $n \rightarrow X\eta$ on charged veto (CV)


Cluster shape (angle of incidence)

Result from 2015 data

Background	Expected counts		
$K_L \rightarrow 2\pi^0$	0.02 ± 0.02		
$K_L ightarrow \pi^+\pi^-\pi^0$	0.05 ± 0.02		
$K_L \rightarrow \text{other}$	0.03 ± 0.01		
Hadron cluster	0.24 ± 0.17		
π^0 from NCC	0.04 ± 0.03		
η from CV	0.04 ± 0.02		
Total	0.42 ± 0.18		

PRL 122 (2019) 021802

 $z_{\text{vtx}}(\pi^0)$ [mm]

$$BR(K_L \to \pi^0 vv) < 3.0 \times 10^{-9} (90\%CL)$$

$$2.2 \times 10^{19} \text{ pot}$$

SES =
$$(1.30 \pm 0.14) \times 10^{-9}$$

Expected bkg =
$$0.42 \pm 0.18$$
 events

Zero events in signal box

$$K_L$$
 flux from $K_L \to 2\pi^0 = 4.6 \times 10^{12}$

 $\pi^0 vv$ acceptance from MC:

Decay in FV: 3.2%

Selection efficiency: 0.52%

Upgrades for 2016-2018

1.4x more data than for 2015 collected in 2016-2018 Several important detector upgrades and analysis improvements

Inner barrel veto

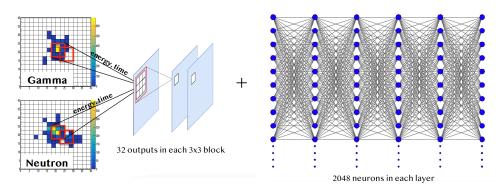
Increase barrel thickness

 $13.5 + 5 X_0$

Installed April 2016

3x better rejection for

 $K_L \rightarrow 2\pi^0$


Trigger and readout upgrades Online cluster counting at level-2

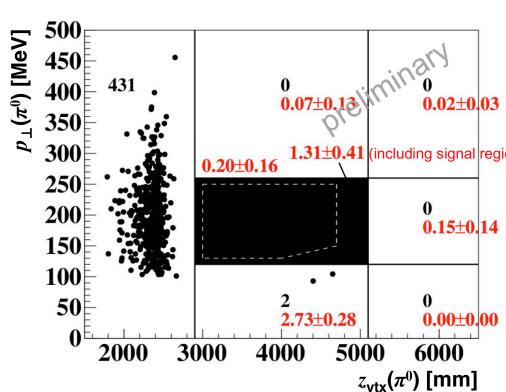
Neutron ID by pulse shape

- Hadronic pulse wider than EM pulse
- Fourier analysis of ADC waveforms
- Reduces hadron cluster bkg ~3x

Cluster shape discrimination

- Convolutional neural net with energies and times in groups of 3x3 cells
- Reduces hadron cluster bkg ~5x

Sensitivity for 2016-2018 data



1.4x more data than for 2015 collected in 2016-2018 Several important detector upgrades and analysis improvements

KOTO preliminary 2016-2018 data, Moriond 2019

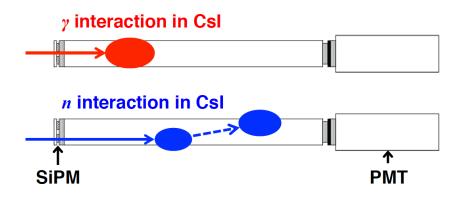
$$SES = 8.2 \times 10^{-10}$$

Background	Expected counts		
$K_L \rightarrow 2\pi^0$	0.09 ± 0.09		
$K_L ightarrow \pi^+\pi^-\pi^0$	0.02 ± 0.02		
Hadron cluster	0.07 ± 0.13		
π^0 from NCC	< 0.19		
η from CV	0.02 ± 0.01		
Total	0.20 ± 0.16		

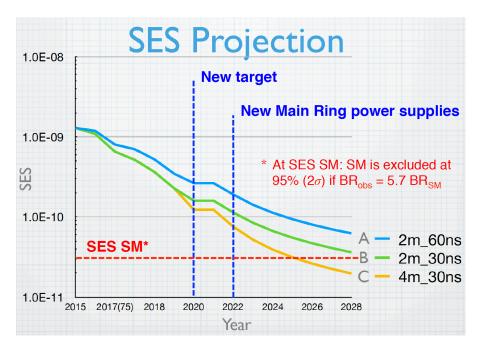
Combined with 2015 result SES $\sim 5 \times 10^{-10}$

New results expected summer 2019!

Path to SM single-event sensitivity


Signal: Need ~15x more (flux × acceptance) to reach SM SES

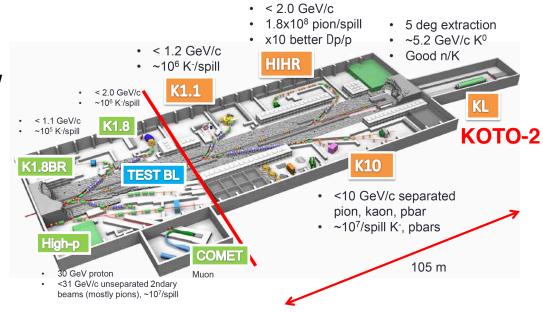
- Beam power expected to increase 50 → 100 kW gradually by 2024
- 20+ months of additional running planned in 2019-2024


Background: Need ~5x more background rejection to get S/B ~ 1 at SM SES

Continuing program of detector upgrades

Dual side readout for CsI modules Installed at end of 2018 run

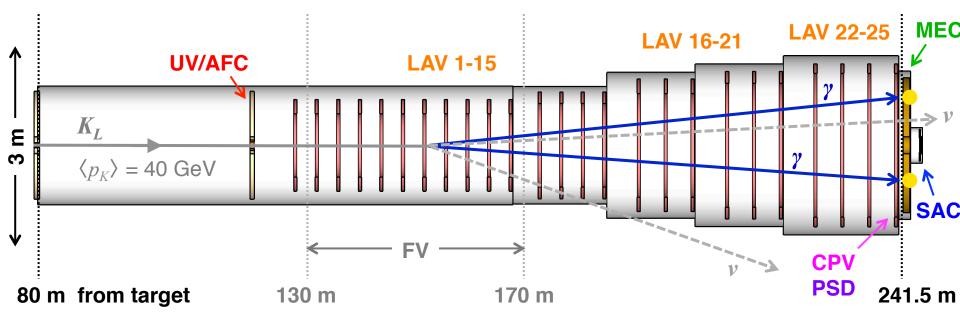
Resolve γ/n interaction depth by reading light from front CsI face with SiPM


Single-event sensitivity for SM BR reached around 2025

Long-term upgrade plans

KOTO Step-2 upgrade:

- Increase beam power to >100 kW
- New neutral beamline at 5° $\langle p(K_L) \rangle = 5.2 \text{ GeV}$
- Increase FV from 2 m to 11 m
 Complete rebuild of detector
- Requires extension of hadron hall

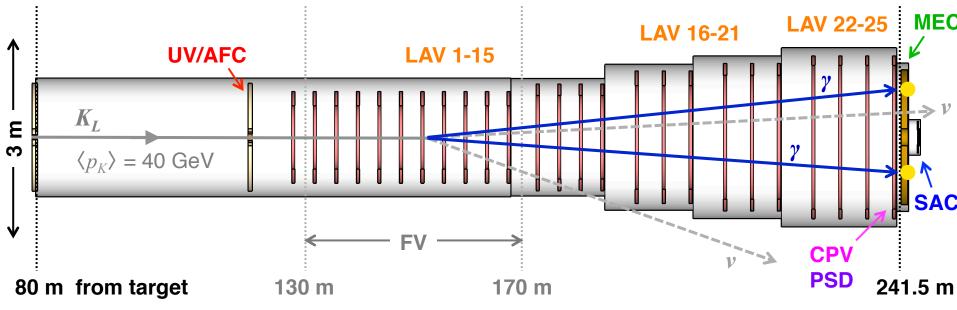


Strong intention to upgrade to 10-100 event sensitivity over long term:

- No official Step 2 proposal yet (plan outlined in 2006 KOTO proposal)
- Scaling KOTO performance for smaller beam angle & larger detector:
 ~10 SM evts/year (10⁷ s) at 100 kW beam power?
- Exploring possibilities for machine & detector upgrades to further increase sensitivity

A $K_L \rightarrow \pi^0 \nu \bar{\nu}$ experiment at the SPS?

400-GeV SPS proton beam on Be target at z = 0 m



- High-energy experiment: Complementary to KOTO
- Photons from K_L decays boosted forward
 - Makes photon vetoing easier veto coverage only out to 100 mrad
- Roughly same vacuum tank layout and fiducial volume as NA62

A $K_L \rightarrow \pi^0 \nu \bar{\nu}$ experiment at the SPS

400-GeV SPS proton beam on Be target at z = 0 m

K_l**EVER** target sensitivity:

5 years starting Run 4

60 SM $K_L \rightarrow \pi^0 vv$

S/B ~ 1

 δ BR/BR($\pi^0 vv$) ~ 20%

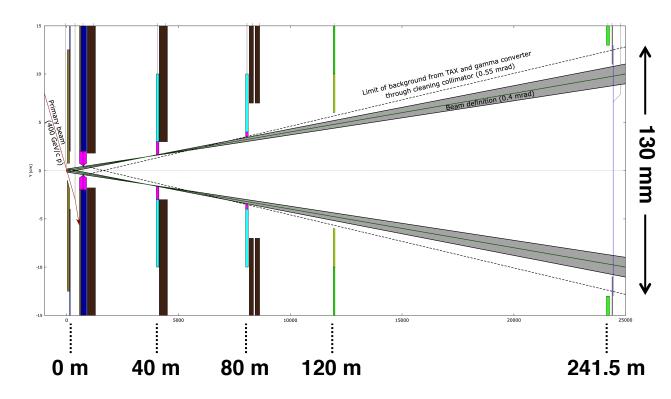
Main detector/veto systems:

UV/AFC Upstream veto/Active final collimator

LAV1-25 Large-angle vetoes (25 stations)

MEC Main electromagnetic calorimeter

SAC Small-angle vetoes


CPV Charged particle veto

PSD Pre-shower detector

Neutral beam and beamline

- 400 GeV p on
 400 mm Be target
- Production angle $\theta = 8.0 \text{ mrad}$
- Solid angle $\Delta\theta = 0.4$ mrad
- 2.1 × 10⁻⁵ K_L /pot in beam
- $\langle p(K_I) \rangle = 40 \text{ GeV}$
- Probability for decay inside FV ~ 4%
- Acceptance for $K_L \rightarrow \pi^0 vv$ decays occurring in FV ~ 5%

- 4 collimation stages to minimize neutron halo, including beam scattered from absorber
- Photon absorber in dump collimator

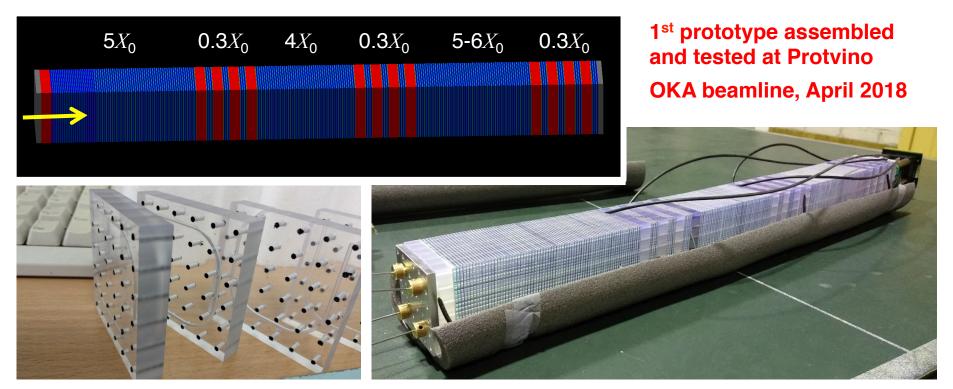
× 5 years

60 $K_L \rightarrow \pi^0 \nu \nu$ events

Shashlyk calorimeter with spy tiles

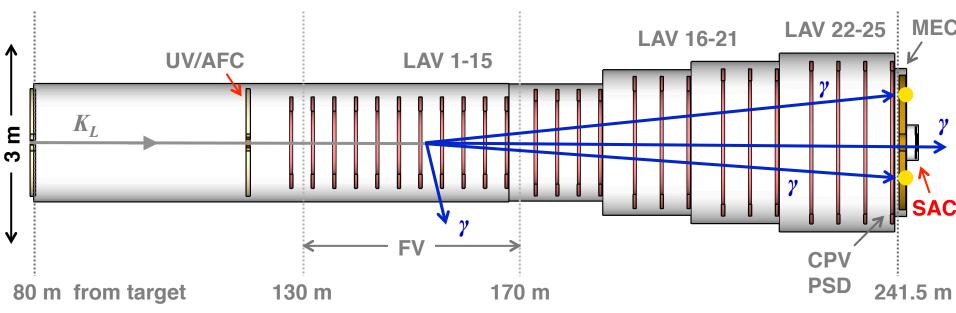
Main electromagnetic calorimeter (MEC):

Fine-sampling shashlyk based on PANDA forward EM calorimeter produced at Protvino


0.275 mm Pb + 1.5 mm scintillator

PANDA/KOPIO prototypes:

- $\sigma_E/\sqrt{E} \sim 3\% / \sqrt{E}$ (GeV)
- $\sigma_t \sim 72 \text{ ps } / \sqrt{E} \text{ (GeV)}$
- σ_x ~ 13 mm / \sqrt{E} (GeV)


New for KLEVER: Longitudinal shower information from spy tiles

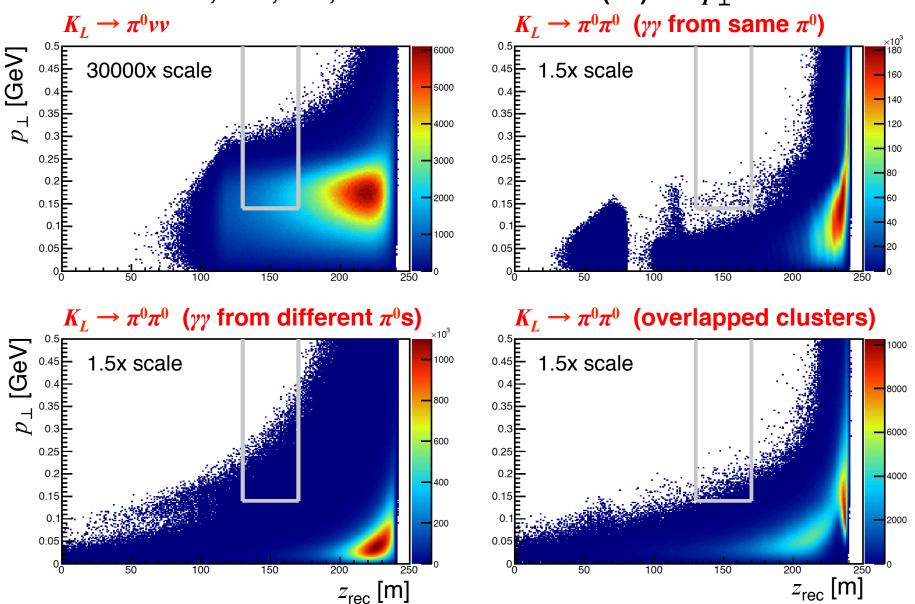
- PID information: identification of μ , π , n interactions
- Shower depth information: improved time resolution for EM showers

Small-angle photon veto

Small-angle photon calorimeter system (SAC)

- Rejects high-energy γ s from $K_L \to \pi^0 \pi^0$ escaping through beam hole
- Must be insensitive as possible to 430 MHz of beam neutrons

Beam comp.	Rate (MHz)	Req. $1 - \varepsilon$
$\gamma, E > 5 \text{ GeV}$	50	10-2
γ , E > 30 GeV	2.5	10-4
n	430	_


Baseline solution:

 Tungsten/silicon-pad sampling calorimeter with crystal metal absorber to exploit enhancement of photon conversion by coherent interaction with lattice

Basic signal selection

No hits in UV, AFC, LAV, SAC + fiducial volume (FV) and p_{\perp} cuts

Additional background rejection

Cluster radius $r_{\text{MEC}} > 35$ cm – Require z_{PSD} in FV if PSD hit available

Status and timeline

Project timeline – target dates:

2017-2018	 Project consolidation Participation in Physics Beyond Colliders Beam test of crystal pair enhancement Input to European Strategy for Particle Physics
2019 Q2	Expression of Interest to CERN SPSC (in preparation)
2020 Q2	Conclusion of European Strategy update KLEVER proposal
2019-2021	Detector R&D
2021-2025	Detector constructionPossible K12 beam test if compatible with NA62
2025	Installation during LS3
2026-	Data taking beginning Run 4

Most groups participating in NA62 have expressed interest in KLEVER We are actively seeking new collaborators!

Summary and outlook

 $K \rightarrow \pi vv$ is a uniquely sensitive indirect probe for high mass scales

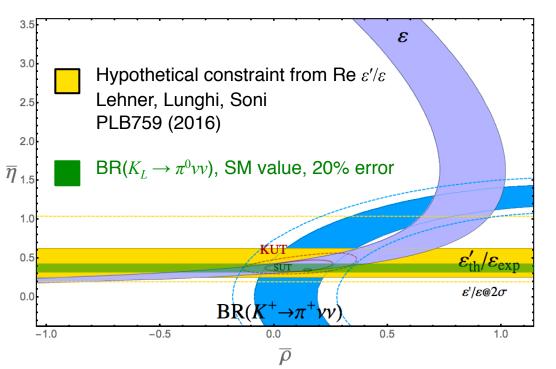
• Need precision measurements of both K^+ and K_L decays

NA62 will improve on current knowledge of BR($K^+ \rightarrow \pi^+ \nu \nu$) in short term, ultimately reaching ~100 event sensitivity

KOTO is making significant progress in background reduction and will reach SM sensitivity to BR($K_L \rightarrow \pi^0 \nu \nu$) by 2025

Design studies indicate that an experiment to measure BR($K_L \to \pi^0 \nu \nu$) can be performed at the SPS in Run 4 (2026)

- Many issues still to be addressed!
- Expected sensitivity: ~ 60 SM events with S/B ~ 1
- KLEVER is preparing Expression of Interest to CERN SPSC and is actively seeking new collaborators


Additional information

Towards the Ultimate Precision in Flavor Physics Institute for Particle Physics Phenomenology Durham UK, 3 April 2019

Matthew Moulson INFN Frascati

Re ε'/ε vs BR($K_L \to \pi^0 \nu \bar{\nu}$)

Re ε'/ε constrains UT in same way as BR($K_L \to \pi^0 \nu \nu$)

Scenario assumes:

- Lattice value for Im A₀ in agreement with expt
- $\delta(\operatorname{Im} A_0) = \sim 100\% \rightarrow 18\%$ $\rightarrow \delta(\operatorname{Re} \varepsilon'_{th}/\varepsilon) = 1.6 \times 10^{-4}$
- BR($K^+ \rightarrow \pi^+ vv$) = SM value with 10% error

Calculations: Re $\varepsilon'/\varepsilon \times 10^4$

RBC/UKQCD '15 $1.38 \pm 5.15 \pm 4.59$

Gisbert & Pich '17 15 ± 7

Measurements: Re $\varepsilon'/\varepsilon \times 10^4$

KTeV $19.2 \pm 1.1 \pm 1.8$

NA48 $14.7 \pm 1.7 \pm 1.5$

PDG fit $16.6 \pm 2.3 (S = 1.6)$

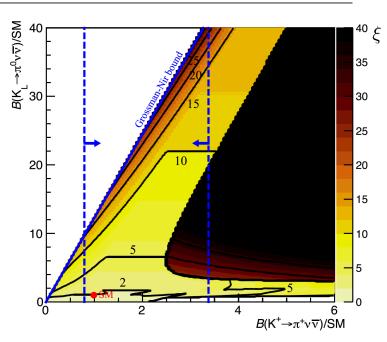
RBC/UKQCD value is 2.1σ lower than experimental value:

In progress: Increased statistics, larger volumes, additional lattice spacings

$K \to \pi \nu \bar{\nu}$ and other kaon observables

Do constraints from Re ε'/ε , ε_K , Δm_K , $K_L \to \mu\mu$ limit size of effects on $K \to \pi \nu \nu$ BRs?

Model	$\Lambda \ [{ m TeV}]$	Effect on $BR(K^+ \to \pi^+ \nu \bar{\nu})$	Effect on $BR(K_L \to \pi^0 \nu \bar{\nu})$
Leptoquarks, most models	1-20	Very large enhancements; mainly ruled out	
Leptoquarks, U_1	1-20	+10% to $+60%$	+100% to $+800%$
Vector-like quarks	1 - 10	-90% to $+60%$	-100% to $+30%$
Vector-like quarks $+ Z'$	10	-80% to $+400%$	-100% to $0%$
Simplified modified Z , no tuning	1	-100% to $+80%$	-100% to $-50%$
General modified Z , cancellation to 20%	1	-100% to $+400%$	-100% to $+500%$
SUSY, chargino Z penguin	4-6 TeV		-100% to $-40%$
SUSY, gluino Z penguin	3-5.5 TeV	0% to +60%	-20% to $+60%$
SUSY, gluino Z penguin	10	Small effect	0% to +300%
SUSY, gluino box, tuning to 10%	1.5 - 3	$\pm 10\%$	$\pm 20\%$
LHT	1	$\pm 20\%$	-10% to $-100%$


Endo et al. PLB771 (2017)

General Z scenario with modified couplings, $\Lambda = 1 \text{ TeV}$

• Because of interference between SM and NP amplitudes, if all constraints satisfied including "discrepancy" in Re ε'/ε :

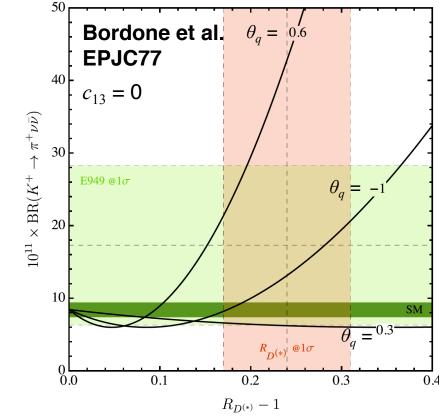
$$BR(K_L \rightarrow \pi^0 vv) \sim 0.5 SM BR$$

- Particularly in simplified scenarios: LH, RH, LRS
- With moderate tuning (cancellation of interference terms to 10%), large values for BR($K \rightarrow \pi \nu \nu$) are possible

$K \to \pi \nu \bar{\nu}$ and other flavor observables

New ideas relating $K \rightarrow \pi vv$ to *B*-sector LFU anomalies:

$$R_K$$
, P_5 ': μ / e LFU in $B \to K\ell\ell$, $B \to K^*\ell\ell$
 $R_{D(*)}$: τ / (μ, e) LFU in $B \to D^{(*)}\ell v$


Coherent explanation from NP coupled predominantly to 3rd generation LH quarks and leptons, e.g., mediated by vector leptoquark

- Di Luzio et al. PRD 96 (2017)
- Buttazzo et al. JHEP 1711

EFT studies suggest large effect for $K \to \pi \nu \nu$

• Bordone et al. EPJC77 (2017)
$$\mathcal{B}(B \to D^{(*)} \tau \bar{\nu}) = \mathcal{B}(B \to D^{(*)} \tau \bar{\nu})_{\text{SM}} \left| 1 + R_0 \left(1 - \theta_q e^{-i\phi_q} \right) \right|^2$$

$$\mathcal{B}(K_L \to \pi^0 \nu \bar{\nu}) = 2\mathcal{B}(K_L \to \pi^0 \nu_e \bar{\nu}_e)_{\text{SM}} + \mathcal{B}(K_L \to \pi^0 \nu_\tau \bar{\nu}_\tau)_{\text{SM}} \left| 1 - \frac{R_0 \, \theta_q^2 (1 - c_{13})}{(\alpha/\pi)(X_t/s_w^2)} \right|^2$$

$$\theta^2(1-c_{12})^2$$

$K_L \rightarrow \pi^0 \nu \bar{\nu}$: Discovery potential

K_LEVER target sensitivity: 5 years starting Run 4

60 SM $K_L \rightarrow \pi^0 vv$ $S/B \sim 1$

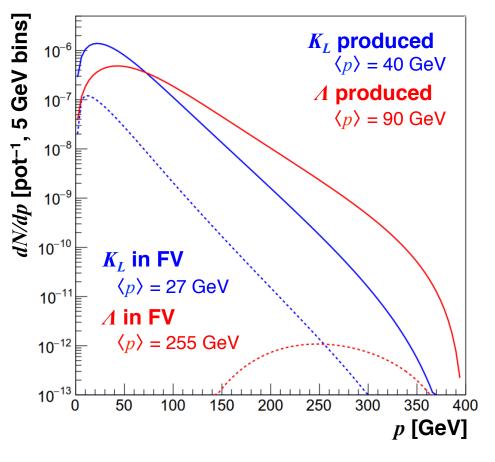
 δ BR/BR($\pi^0 vv$) ~ 20%

60 $K_L \rightarrow \pi^0 vv$ events at SM BR 60 background events

Signif.
$$\approx \frac{S_{\text{obs}} - S_{\text{SM}}}{\sqrt{S_{\text{obs}} + B_{\text{obs}}}}$$

If BR($K_I \rightarrow \pi^0 vv$) is:

- Suppressed to 0.25 BR_{SM} \Rightarrow **5** σ
- Enhanced to 2 BR_{SM} \Rightarrow 5 σ
- Suppressed to 0.5 BR_{SM} \Rightarrow 3 σ


NP effects on $K \to \pi \nu \nu$ BRs with constraints from Re ε'/ε , ε_K , Δm_K , $K_L \to \mu \mu$

Model	$\Lambda [\text{TeV}]$	Effect on $BR(K^+ \to \pi^+ \nu \bar{\nu})$	Effect on $BR(K_L \to \pi^0 \nu \bar{\nu})$	
Leptoquarks, most models	1-20	Very large enhancements; mainly ruled out		
Leptoquarks, U_1	1-20	+10% to $+60%$	+100% to $+800%$	
Vector-like quarks	1-10	-90% to $+60%$	-100% to $+30%$	
Vector-like quarks $+ Z'$	10	-80% to $+400%$	-100% to $0%$	
Simplified modified Z , no tuning	1	-100% to $+80%$	-100% to $-50%$	
General modified Z , cancellation to 20%	1	-100% to $+400%$	-100% to $+500%$	
SUSY, chargino Z penguin	4-6 TeV		-100% to $-40%$	
SUSY, gluino Z penguin	$3-5.5~{\rm TeV}$	0% to +60%	-20% to $+60%$	
SUSY, gluino Z penguin	10	Small effect	0% to +300%	
SUSY, gluino box, tuning to 10%	1.5 - 3	$\pm 10\%$	$\pm 20\%$	
LHT	1	$\pm 20\%$	-10% to $-100%$	

Beam and intensity requirements

 K_L and Λ fluxes, $\theta = 8.0$ mrad Parameterized from FLUKA simulation

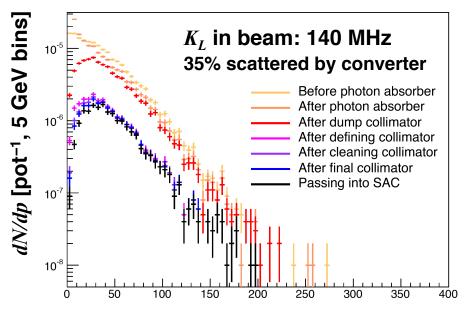
- 400 GeV p on 400 mm Be target
- Production at $\theta = 8.0$ mrad:
 - As much K_L production as possible
 - Low ratio of n/K_L in beam ~ 3
 - Reduce \(\Lambda \) production and soften momentum spectrum
- Solid angle $\Delta\theta$ = 0.4 mrad
 - Large $\Delta \theta = \text{high } K_L \text{ flux}$
 - Maintain tight beam collimation to improves p_{\perp} constraint for background rejection
- 2.1 × 10⁻⁵ K_L in beam/pot
- Probability for decay inside FV ~ 4%
- Acceptance for $K_L \rightarrow \pi^0 vv$ decays occurring in FV ~ 5%

10¹⁹ pot/year (= 100 eff. days) E.g.: 2×10^{13} ppp/16.8 s

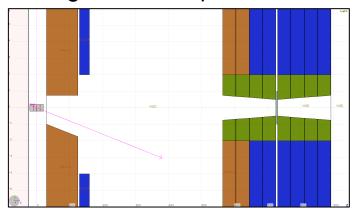
× 5 years

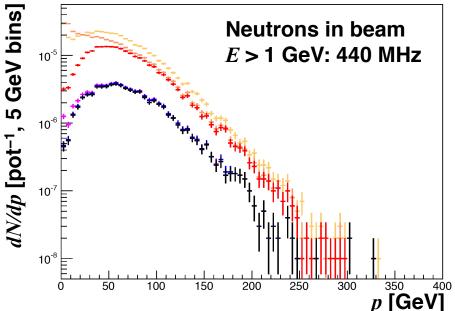
60 $K_L \rightarrow \pi^0 vv$ events

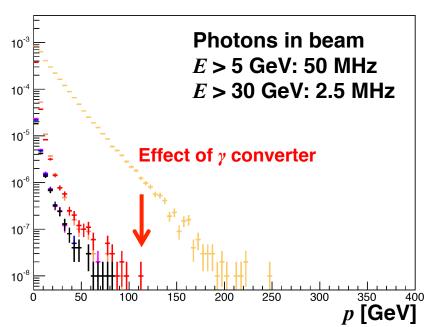
High-intensity neutral beam study



Conclusions from PBC Conventional Beams working group


Issue	Approach
Proton availability	SHiP supercycle = 4×10^{19} pot/yr with 1×10^{13} ppp for users KLEVER requires 1×10^{19} pot/yr (25% of SHiP)
Extraction losses	Good results on ZS losses and spill quality from SPS Losses & Activation WG (SLAWG) workshop, 9-11 November 2017: https://indico.cern.ch/event/639766/
Beam loss on T4	Vertical by-pass to increase T4 \rightarrow T10 transmission to 80%
Equipment protection	Interlock to stop SPS extraction during P0Survey reaction time
Ventilation in ECN3	Preliminary measurements indicate good air containment Comprehensive ventilation system upgrade not needed
ECN3 beam dump	Significantly improved for NA62 Need to better understand current safety margin
T10 target & collimator	Thermal load on T10 too high → Use CNGS-like target? Dump collimator will require modification/additional cooling
Radiation dose at surface above ECN3	8 mrad vertical targeting angle should help to mitigate Preliminary results from FLUKA simulations Proposed target shielding scheme appears to be adequate Mixed mitigation strategy may be needed for forward muons


Neutral beam simulation



FLUKA simulation of beamline 32-mm tungsten coverter $(9X_0)$ Detail of target and dump collimator:

NA48 LKr calorimeter as MEC?

Quasi-homogeneous ionization calorimeter, $27X_0$ of LKr

$$\frac{\sigma_E}{E} = \frac{3.2\%}{\sqrt{E}} \oplus \frac{9\%}{E} \oplus 0.42\% \qquad \sigma_t = \frac{2.5 \text{ ns}}{\sqrt{E}}$$

Photon detection efficiency probably adequate

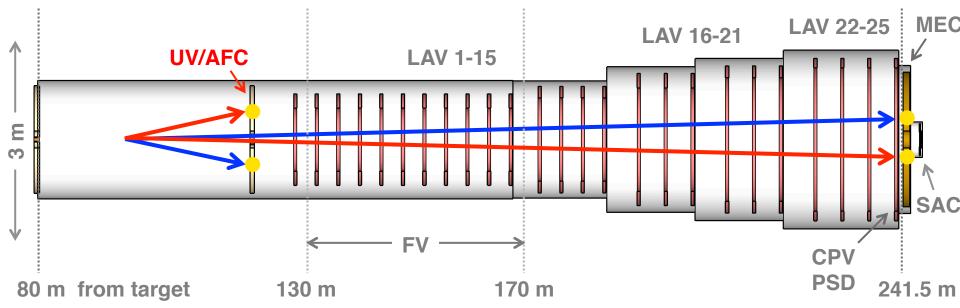
- NA48-era studies for NA62: 1 ε < 10⁻⁵ for E_{γ} > 10 GeV
- High-energy efficiency confirmed with NA62 data

Other concerns about LKr:

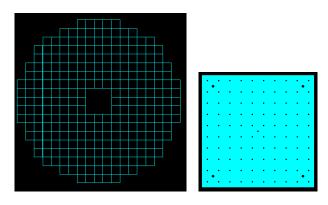
Time resolution

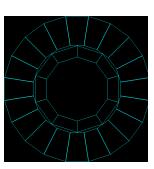
- $\sigma_t \sim 500$ ps for π^0 with $E_{yy} > 20$ GeV
- Would require improvement SAC may have ~100 MHz accidental rate

Long-term reliability (1996 \rightarrow 2018 \rightarrow 2030?)


LKr cold bore r=80 mm and start of sensitive volume r=120 mm limits beam solid angle to $\Delta\theta < 0.3$ mrad $\rightarrow 40\%$ less K_L flux

Baseline design calls for NA48 LKr to be replaced by new MEC

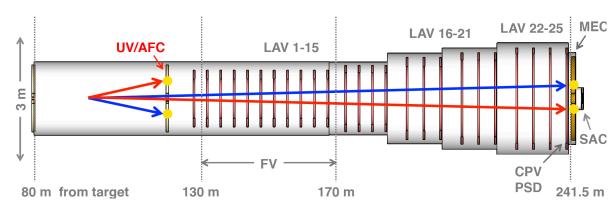

Vetoes for upstream $K_L \rightarrow \pi^0 \pi^0$



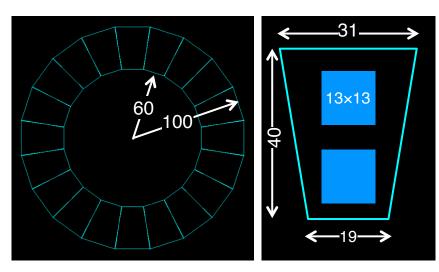
Upstream veto (UV):

- 10 cm < r < 1 m:
- Shashlyk calorimeter modules à la PANDA/KOPIO, like MEC

Active final collimator:



- 4.2 < r < 10 cm
- LYSO collar counter
- 80 cm long
- Internal collimating surfaces
- Intercepts halo particles from scattering on upstream collimators or γ absorber Rejects π^0 s from inelastic interactions
- Rejects $K_L \to \pi^0 \pi^0$ in transit through collimator


Active final collimator

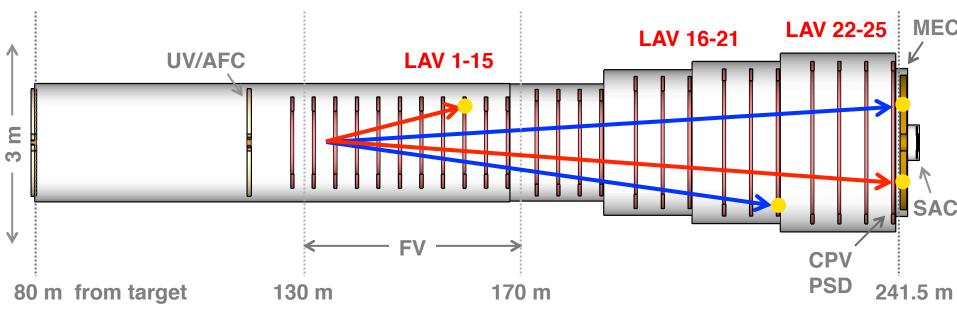
- Intercepts halo particles from scattering on upstream collimators or γ absorber Rejects π^0 s from inelastic interactions
- Rejects $K_L \to \pi^0 \pi^0$ in transit through collimator

Design in progress:

- 60 mm < r < 100 mm
- 80 cm long (3-4 consecutive rings)
- 20-24 crystals per ring

LYSO collar counter with internal collimating surfaces

Fast (40 ns), bright (~ NaI), radiation hard (>10⁶ Gy)


Crystals read out on back side with APDs

- Good coupling with LYSO and high quantum efficiency
- Simple signal and HV management
- E.g. RMD S1315 (13x13 mm²)

Expected light yield > 4000 p.e./MeV

Large-angle photon vetoes

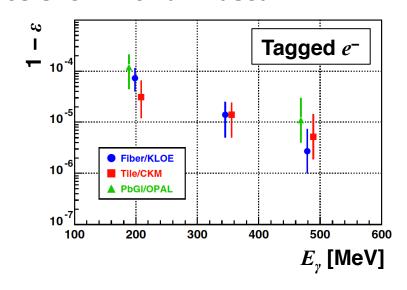
25 new large-angle photon veto stations (LAV)

- 5 sizes, sensitive radius 0.85 to 1.5 m, at intervals of 4 to 5 m
- Hermetic coverage out to 100 mrad Need good detection efficiency at low energy (1 – ε ~ 0.5% at 20 MeV)
- Baseline technology: Lead/scintillator tile with WLS readout Based on design of CKM VVS
 Assumed efficiency based on E949 and CKM VVS experience

Large-angle photon vetoes

KOPIO Photonuclear KOPIO Sampling KOPIO Punchthrouah

25 new LAV detectors providing hermetic coverage out to 100 mrad Need good detection efficiency at low energy (1 – ε ~ 0.5% at 20 MeV)


Baseline technology: CKM VVS
Scintillating tile with WLS readout

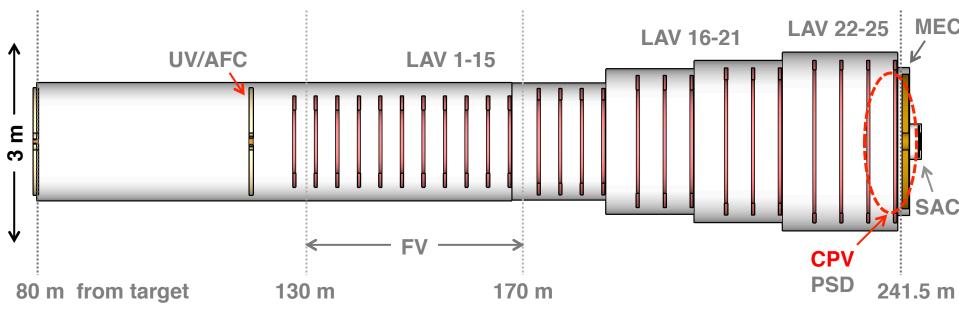
Good efficiency assumptions based on E949 and CKM VVS experience

E949 barrel veto efficiencies Same construction as CKM

Tests for NA62 at Frascati BTF

Parameterization: E_{γ} [MeV]

1-129 MeV: KOPIO (E949 barrel) 203-483 MeV: CKM VVS


10

Tests at JLAB for CKM:

• $1 - \varepsilon \sim 3 \times 10^{-6}$ at 1200 MeV

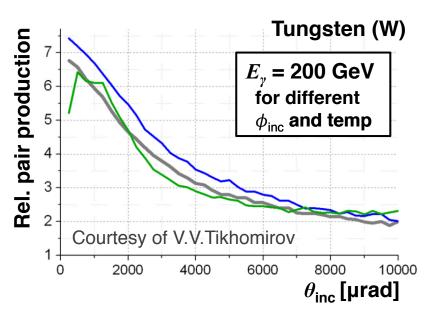
Charged particle rejection

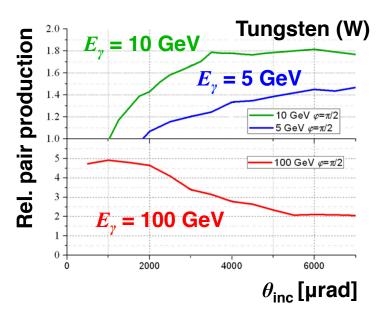
Most dangerous mode: K_{e^3}

- BR = 40%
- Easy to mistake $e \leftrightarrow \gamma$ in LKr
- Acceptance $\pi^0 vv/K_{e3} = 30$
- → Need 10⁻⁹ suppression!

Charged particle veto (CPV)

Scintillating tiles, just upstream of MEC


Calorimetric ID for μ and π


- Shower profile in MEC
- Re-use NA62 hadronic calorimeters
 MUV1/2 (not shown), downstream of MEC

Efficient γ conversion with crystals

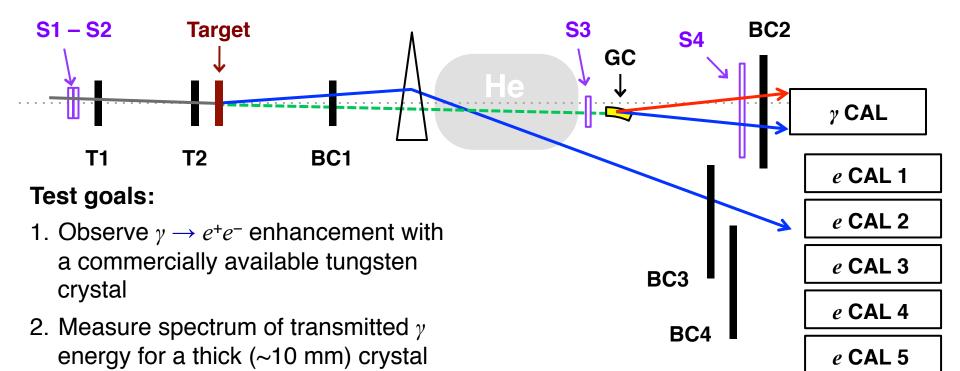
Coherent effects in crystals enhance pair-conversion probability

Use coherent effects to obtain a converter with large effective λ_{int}/X_0 :

1. Beam photon converter in dump collimator

Effective at converting beam γ s while relatively transparent to K_L

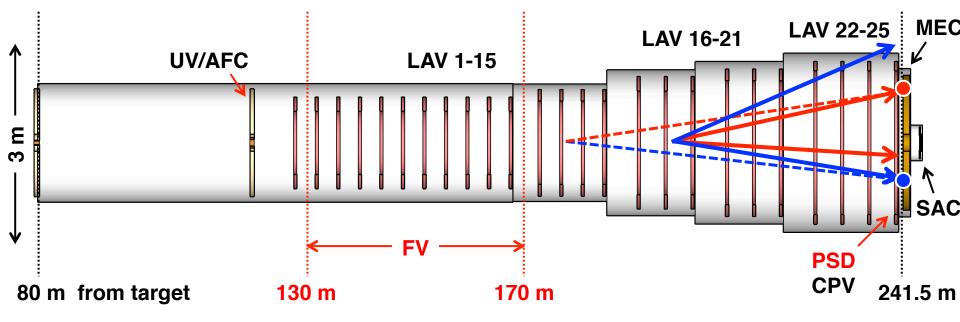
2. Absorber material for small-angle calorimeter (SAC)


Must be insensitive as possible to high flux of beam neutrons while efficiently vetoing high-energy γ s from K_L decays

Beam test of $\gamma \rightarrow e^+e^-$ in crystals

AXIAL group is collaborating with KLEVER on test beam measurement of pair-production enhancement in crystals

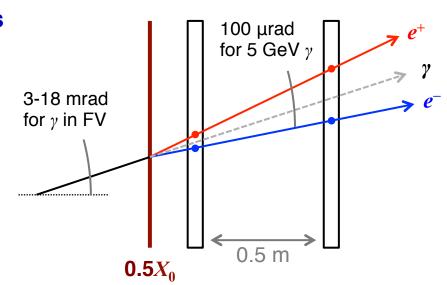
Test beam setup for tagged photons from 120 GeV e^{-} :



- 3. Measure pair conversion vs. E_{γ} , θ_{inc} Nearly
- Obtain information to assist MC development for beam photon converter and SAC

- Nearly all detectors and DAQ system made available by AXIAL
- 1 week H2 of beam: 8-15 August 2018

Mispaired $K_L \rightarrow \pi^0 \pi^0$ events

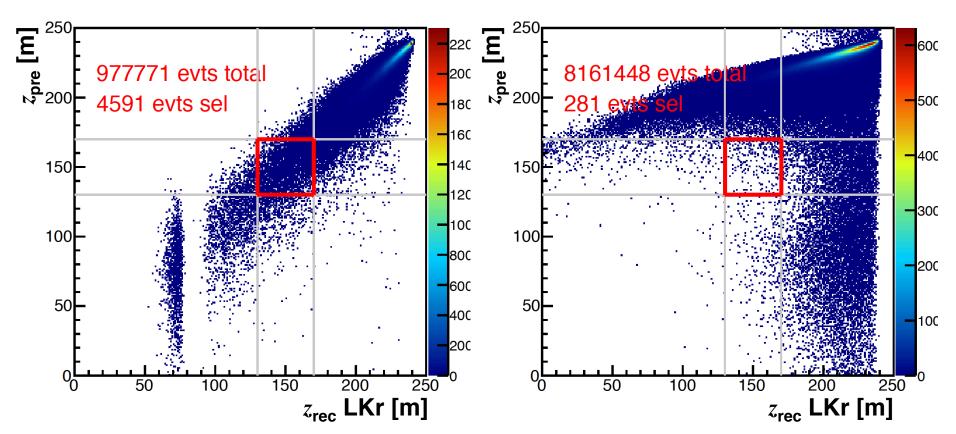


Distance from FV to LKr significantly helps for rejection of "odd" background

- Most $K_L \to \pi^0 \pi^0$ decays with lost photons occur just upstream of the MEC
- " π^0 s" from mispaired γ s are mainly reconstructed upstream of true position

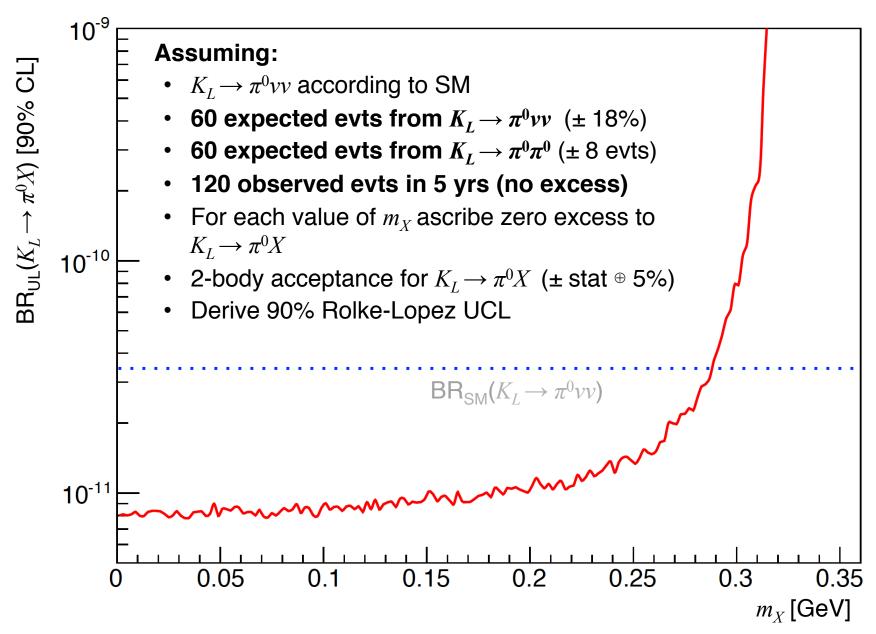
Preshower detector (PSD) is particularly effective against downstream decays

Preshower background rejection



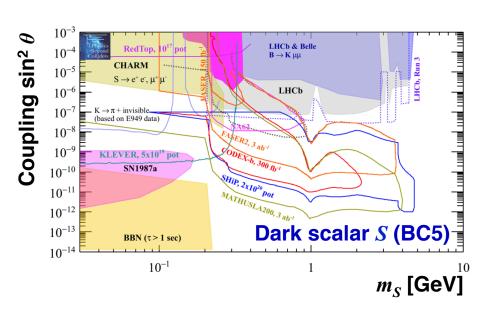
Preshower vertex z_{pre} vs. LKr vertex z_{rec} z_{rec} reconstructed by imposing $M(\gamma\gamma) = m_{\pi 0}$

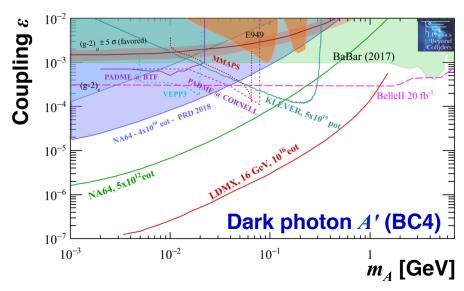
- $K_L \rightarrow \pi^0 \pi^0$, 1 year equivalent
- No cuts on FV, p_{\perp} , $r_{\rm min}$

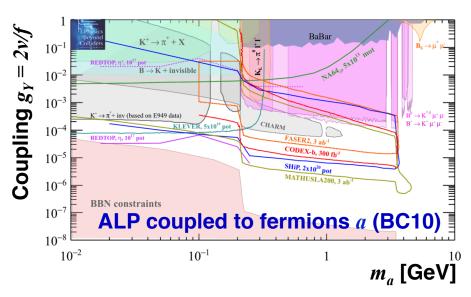

Even pairs (2 γ from same π^0) 1 γ converts in preshower

Odd pairs (2 γ s from different π^0) 1 γ converts in preshower

Limits on $K_L \to \pi^0 X$ from $K_L \to \pi^0 \nu \bar{\nu}$


Exclusion potential from $K_L \rightarrow \pi^0 X$




For $K_L \to \pi^0 X$, interpret X as:

- Invisible dark photon A' (BC2)
- Higgs-mixed scalar S (BC4)
- Axion-like particle a with fermion couplings (BC10)

Obtain limits in coupling vs. mass plane for each scenario*

* Calculation assumes that decaying particles escape the decay volume