The Higgs Boson and the Early Universe

Fedor Bezrukov

The University of Manchester

Lake Louise Winter Institute 2019 10-16 February 2019 Canada

Outline

Introduction: Standard Model and the Universe

Inflation

- Observations and simplest realization
- How to use Higgs for inflation
- 3 Vacuum stability and particle masses
 - Experimental situation
 - What can happen?

Quantum corrections and theoretical problems

Conclusions

Lesson from LHC so far - Standard Model is good

- SM works in all laboratory/collider experiments (electroweak, strong)
- LHC 2012 final piece of the model discovered Higgs boson
 - Mass measured ~ 125 GeV weak coupling! Perturbative and predictive for high energies
- Add gravity
 - get cosmology
 - get Planck scale $M_{Pl} \sim 1.22 \times 10^{19}$ GeV as the highest energy to worry about

Lesson from LHC so far - Standard Model is good

- SM works in all laboratory/collider experiments (electroweak, strong)
- LHC 2012 final piece of the model discovered Higgs boson
 - Mass measured ~ 125 GeV weak coupling! Perturbative and predictive for high energies
- Add gravity
 - get cosmology
 - get Planck scale $M_{Pl} \sim 1.22 \times 10^{19}$ GeV as the highest energy to worry about

Things not explained by SM

Experimental observations: Cosmology

- Dark Matter
- Baryon asymmetry of the Universe
- Inflation

Laboratory

Neutrino oscillations

Explain everything except inflation - sterile neutrino [Asaka, Blanchet, Shaposhnikov'05, Asaka, Shaposhnikov'05]

ACDM cosmology – describes the Universe

The Universe is

- Hot (I mean 2.73° K photons now)
- Expanding
- Extremely uniform (on large scales)

How did it all start?

ACDM cosmology – describes the Universe

The Universe is

- Hot (I mean 2.73° K photons now)
- Expanding
- Extremely uniform (on large scales)

Problem - how all this happened?

Variations of initial conditions problem

- Singularity problem
- Flatness problem
- Entropy problem
- Horizon problem
- Primordial perturbations problem

Horizon problem

Observed Universe contained

2000 casually disconnected regions on CMB sky

Why they are so similar?

CMB – shape of primordial density perturbationsCMB sky $T = 2.725^{\circ}$ KCMB sky in detail $\delta T/T \sim 10^{-5}$

Primordial perturbations

nearly (but not exactly!) scale invariant

$$\mathcal{P}_{\mathcal{R}}(k) = A_{\mathcal{R}} \left(\frac{k}{k_*}\right)^{n_s - 1}$$

with spectral index $n_s \sim 0.96$

Primordial perturbations

Inflation - accelerated expansion

$$\frac{l_i}{l_c}\sim \frac{\dot{a}_i}{\dot{a}_0}$$

Inflation is a stage of accelerated expansion of the Universe when gravity acts as a repulsive force

Small homogeneous patch is expanded to the whole observed Universe

In the accelerated Universe *event horizon* (region of the Universe that can be in principle affected by an event) exists

$$r_e(t) = a(t) \int_t^{t_{\max}} \frac{dt}{a} = a(t) \int_{a(t)}^{a_{\max}} \frac{da}{aa}$$

converges for growing *à*

Accelerated expansion - vacuum energy?

How to realize inflation?

- Vacuum energy is ok for present day accelerated expansion
 - $\bullet\,\,$ cosmological constant $\Lambda\,\,$
 - exponential expansion $a \propto \exp(Ht)$ acceleration
- But: it lasts forever!
- Should stop this expansion somehow after inflation...

Chaotic inflation-a scalar field

gives also primordial perturbations!

Field quantum fluctuations – primordial perturbations $\delta T/T \sim 10^{-5}$ requires: quartic coupling: $\lambda \sim 10^{-13}$ (or mass: $m \sim 10^{13}$ GeV) Where to get such a super weakly coupled field?

CMB observations favour flat potentials PLANCK 2018

- Tensor modes (primordial gravity waves) $\propto V$
- primordial density perturbations $\propto V^{3/2}/V'$

Non-minimal coupling to gravity solves the problem

Quite an old idea

For a scalar field coupling to the Ricci curvature is possible (actually *required* by renormalization)

- [A.Zee'78, L.Smolin'79, B.Spokoiny'84]
- [D.Salopek J.Bond J.Bardeen'89]

Scalar part of the (Jordan frame) action

$$S_{J} = \int d^{4}x \sqrt{-g} \left\{ -\frac{M_{P}^{2}}{2}R - \xi \frac{h^{2}}{2}R + g_{\mu\nu}\frac{\partial^{\mu}h\partial^{\nu}h}{2} - \frac{\lambda}{4}(h^{2} - v^{2})^{2} \right\}$$

- *h* is the Higgs field; $M_P \equiv \frac{1}{\sqrt{8\pi G_N}} = 2.4 \times 10^{18} \text{GeV}$
- SM higgs vev $v \ll M_P/\sqrt{\xi}$ can be neglected in the early Universe
- At h ≫ M_P/√ξ all masses are proportional to h − scale invariant spectrum!

[FB, Shaposhnikov'08]

Conformal transformation - nice way to calculate

It is possible to get rid of the non-minimal coupling by the conformal transformation (change of variables)

$$\hat{g}_{\mu\nu} = \Omega^2 g_{\mu\nu} , \qquad \Omega^2 \equiv 1 + \frac{\xi h}{M_{\mu}^2}$$

Redefinition of the Higgs field to get canonical kinetic term

$$\frac{d\chi}{dh} = \sqrt{\frac{\Omega^2 + 6\xi^2 h^2 / M_P^2}{\Omega^4}} \implies \begin{cases} h \simeq \chi & \text{for } h < M_P / \xi \\ \Omega^2 \simeq \exp\left(\frac{2\chi}{\sqrt{6}M_P}\right) & \text{for } h > M_P / \xi \end{cases}$$

Resulting action (Einstein frame action)

$$S_E = \int d^4x \sqrt{-\hat{g}} \left\{ -\frac{M_P^2}{2} \hat{R} + \frac{\partial_\mu \chi \partial^\mu \chi}{2} - \frac{\lambda}{4} \frac{h(\chi)^4}{\Omega(\chi)^4} \right\}$$

Potential - different stages of the Universe

CMB parameters are predicted

Exactly as preferred by observations

spectral index
$$n \simeq 1 - \frac{8(4N+9)}{(4N+3)^2} \simeq 0.97$$

tensor/scalar ratio $r \simeq \frac{192}{(4N+3)^2} \simeq 0.0033$
 $\delta T/T \sim 10^{-5} \implies \frac{\xi}{\sqrt{\lambda}} \simeq 47000$

Why should we care about particle physics?

- What happens at the scales between Electroweak 200 GeV and Planck 10¹⁹ GeV?
- Is SM consistent at all energies?
- Do any problems appear?
- Are there quantum corrections to the inflationary dynamics?

Standard Model self-consistency and Radiative Corrections

 Higgs self coupling constant λ changes with energy due to radiative corrections.

$$(4\pi)^2 \frac{d\lambda}{d\log\mu} = 24\lambda^2 - 6y_t^4 + \frac{3}{8}(2g_2^4 + (g_2^2 + g_1^2)^2) + (-9g_2^2 - 3g_1^2 + 12y_t^2)^2$$

- Behaviour is determined by the masses of the Higgs boson $m_H = \sqrt{2\lambda}v$ and other heavy particles (top quark $m_t = y_t v/\sqrt{2}$)
- If Higgs is heavy M_H > 170 GeV the model enters strong coupling at some low energy scale – new physics required.

RG corrections change Higgs potential

Realistic Higgs mass options

Higgs self-coupling evolution:

mu=125.5 GeV

0.14 v₁=0.9176. m₁=170.0 0.12 yt=0.9235, mt=171.0 0.1 v=0.9294 m=172.0 0.9359. m = 173.1 0.08 v+=0.9413, m+=174.0 0.06 v=0.9472 m=175.0 • For Higgs masses $M_H < M_{critical}$ 0.04 0.02 coupling constant is negative -0.02 above some scale μ_0 . -0.04 100000 1e+20 1e+10 1e+15 • The Higgs potential may µ, GeV become negative! $V(\phi) \simeq \lambda(\phi) \frac{\phi}{4}$ Our world is not in the lowest M_H > M_{crit} energy state! Problems at some scale $\mu_0 > 10^{10} \text{ GeV}?$ Our vacuum Planc

vacuum

Experiment: we are in the critical case

- Precision goal for y_t better than 0.5%
- Higgs quartic self coupling less relevant

FB, Kalmykov, Kniehl, Shaposhnikov'12; Buttazo et.al.'13, Bednyakov et.al.'15

Determination of top quark Yukawa

- Hard to determine mass in the events
- Hard to relate the "pole" (even worse for "Mont-Carlo") mass to the MS top quark Yukawa
 - NLO event generators
 - Electroweak corrections important at the current precision goals!
- Build a lepton collider! FCC-ee! $\delta m_t \sim 100 \text{ MeV}$
- Improve analysis on a hadron collider?

Options for Higgs potential

- Higher m_H , lower m_t
 - stable EW vacuum
 - Higgs inflation as in the first part of the talk
- Lower m_H , higher m_t
 - unstable EW vacuum?!
- Critical m_H for given m_t
 - Interesting coincidence:
 - $m_H \simeq 126$ GeV predicted
 - λ_{min} is at scale $\mu \sim M_P$

What to do if we are metastable?

Vacuum decays by creating bubbles of true vacuum, which then expand very fast $(v \rightarrow c)$

Tunneling suppression: $p_{\text{decay}} \propto e^{-S_{\text{bounce}}} \sim e^{-\frac{8\pi^8}{3\lambda(h)}}$ Lifetime \gg age of the Universe!

Note on Planck corrections

- Critical bubble size ~ Planck scale
- Potential corrections $V_{\text{Planck}} = \pm \frac{\phi^n}{M_0^{n-4}}$ change lifetime!
 - Only + sign is allowed for Planck scale corrections!

Stability in Early Universe

As far as we are "safe" now (i.e. at low energies), what about Early Universe? What happens with the Higgs boson at inflation?

Metastable vacuum during inflation is dangerous

- Let us suppose Higgs is not at all connected to inflationary physics (e.g. *R*² inflation)
- All fileds have vacuum fluctuation
- Typical momentum *k* ~ *H*_{inf} is of the order of Hubble scale

If typical momentum is greater than the potential barrier - SM vacuum would decay if

$$H_{\rm inf} > V_{\rm max}^{1/4}$$

Most probably, fluctuations at inflation lead to SM vacuum decay...

• Observation of any tensor-to-scalar ratio *r* by CMB polarization missions would mean great danger for metastable SM vacuum!

Measurement of primordial tensor modes determines scale of inflation

$$H_{\rm inf} = \sqrt{\frac{V_{\rm infl}}{3M_p^2}} \sim 8.6 \times 10^{13} \,{\rm GeV} \left(\frac{r}{0.1}\right)^{1/2}$$

Does inflation contradict metastable EW vacuum?

Of course we do not know

- Higgs interacting with inflation can cure the problem. Examples
 - Higgs (ϕ)-inflaton (χ) interaction may stabilize the Higgs

$$L_{\rm int} = -\alpha \phi^2 \chi^2$$

• Higgs-gravity *negative* non-minimal coupling stabilizes Higgs in de-Sitter (inflating) space

$$L_{\rm nm} = \xi \phi^2 R$$

 New physics *below* μ₀ may remove Planck scale vacuum and make EW vacuum stable – many examples

Near critical Higgs mass - critical HI

$$U_{\text{RG improved}}(\chi) = \frac{\lambda(\mu)}{4} \frac{\mathcal{M}_{P}^{4}}{\xi^{2}} \left(1 - e^{-\frac{2\chi}{\sqrt{6}M_{P}}}\right)^{2}$$

 U/M_P^4

 $1 > \lambda_{min} > 0$

- Small ξ ≤ 10 − λ vs. δλ significant, gives "feature" in the potential
- Very flat potential larg perturbations.
- different inflationary predictions large r
- Production of primordial black holes – even Dark Matter
 - Solar mass? [Ezquiaga, Garcia-Bellido, et.al.'18]
 - Planck mass?
 [Rasanen, Tomberg'18]

 n_{\cdot}

Consistency

Up to now we neglected the quantum effects, assuming they do not spoil the story. Is this really the case?

Cut off scale today

Let us work in the Einstein frame Change of variables: $\frac{d\chi}{dh} = \frac{M_P \sqrt{M_P^2 + (\xi + 6\xi^2)h^2}}{M_P^2 + \xi h^2}$ leads to the higher order terms in the potential (expanded in a power law series)

$$V(\chi) = \lambda \frac{h^4}{4\Omega^4} \simeq \lambda \frac{h^4}{4} \simeq \lambda \frac{\chi^4}{4} + \# \frac{\chi^6}{(M_P/\xi)^2} + \cdots$$

Unitarity is violated at tree level

in scattering processes (eg. 2 \rightarrow 4) with energy above the "cut-off" $E > \Lambda_0 \sim \frac{M_P}{\xi}$

Hubble scale at inflation is $H \sim \lambda^{1/2} \frac{M_P}{\xi}$ – not much smaller than the today cut-off Λ_0 :(

[Burgess, Lee, Trott'09, Barbon, Espinosa'09, Hertzberg'10]

Threshold effects at M_P/ξ summarized by two new arbitrary constants $\delta\lambda$, δy_t

• Low and high scale coupling constants may be different

$$\begin{aligned} \lambda(\mu) &\to \\ \lambda(\mu) + \delta \lambda \left[\left(F'^2 + \frac{1}{3} F''F \right)^2 - 1 \right] \end{aligned}$$

$$y_t(\mu) \rightarrow y_t(\mu) + \delta y_t \left[F'^2 - 1 \right]$$

Attempts to improve

- UV complete theories
- Scale invariant theories

Higgs inflation and radiative corrections

Can be also used to "save" the metastable vacuum

(Not really to scale)

New physics *above* μ_0 may solve the problem

Requirements

- Minimum at Planck scale should be removed (but can remain near $\mu_0 \sim 10^{10}$ GeV)
- Reheating after inflation should be fast.

No need for new physics at "low" (< μ_0) scales! Example: Higgs inflation with threshold corrections at M_p/ξ After inflation symmetry is restored in preheating

- Thermal potential removes the high scale vacuum
- Universe cools down to EW vacuum
- We live in the metastable vacuum hoping not to decay too soon

Further note on variable choice:

We really need to know how quantum gravity works

- How do we interpret the gravity action:
 - Metric $g_{\mu\nu}(x)$ is an independent field, Connection $\Gamma^{\lambda}_{\mu\nu} \equiv \frac{g^{\lambda\rho}}{2} (g_{\rho\mu,\nu} + g_{\rho\nu,\mu} - g_{\mu\nu,\rho})$
 - Palatiny $g_{\mu\nu}(x)$, $\Gamma^{\lambda}_{\mu\nu}(x)$ are independent fields
- Different *classical* dynamics if $\xi \neq 0$ Can be seen as different transformation under $g_{\mu\nu} \rightarrow \Omega(x)g_{\mu\nu}$

Metric	Palatini
$R \to \Omega^2 R + 6 g^{\mu\nu} \partial_\mu \ln \Omega \partial_\nu \ln \Omega$	$R \rightarrow \Omega^2 R$
$\xi \sim 5 \times 10^4 \sqrt{\lambda}$	$\xi \sim 1.5 \times 10^{10} \lambda$
$r \sim 3.2 \times 10^{-3}$	$r \sim 3.5 \times 10^{-14} \lambda^{-1}$

Rather different inflationary predictions!

e.g. Rasanen, Wahlman' 17; Järv, Racioppi, Tenkanen' 17

Conclusions

• There is a chance that we know the origins of the Universe!

- But we have yet to measure
 - top quark mass
 - Higgs boson mass
 - tensor-to-scalar ratio CMB B-modes
 - ...
- to get peace of mind of living in a stable world
- probably to learn about Planck scale physics

Conclusions

- There is a chance that we know the origins of the Universe!
- But we have yet to measure
 - top quark mass
 - Higgs boson mass
 - tensor-to-scalar ratio CMB B-modes
 - ...
- to get peace of mind of living in a stable world
- probably to learn about Planck scale physics

Conclusions

- There is a chance that we know the origins of the Universe!
- But we have yet to measure
 - top quark mass
 - Higgs boson mass
 - tensor-to-scalar ratio CMB B-modes
 - ...
- to get peace of mind of living in a stable world
- probably to learn about Planck scale physics

Possible: New physics only at low scales – ν MSM

Role of sterile neutrinos

 $N_1 \quad M_1 \sim 1-50$ keV: (Warm) Dark Matter, Note: $M_1 = 7$ keV has been seen in X-rays?! $N_{2,3} \quad M_{2,3} \sim$ several GeV: Gives masses for active neutrinos, Baryogenesys

Asaka, Shaposhnikov'05; Asaka, Blanchet, Shaposhnikov'05

Higgs boson mass

- T. Asaka, S. Blanchet and M. Shaposhnikov Phys. Lett. B631 (2005) 151-156, hep-ph/0503065.
- T. Asaka and M. Shaposhnikov Phys. Lett. B620 (2005) 17–26, $hep\mbox{-}ph/0505013.$
- F. L. Bezrukov and M. Shaposhnikov Phys. Lett. B659 (2008) 703-706.
- J. M. Ezquiaga, J. Garcia-Bellido and E. Ruiz Morales Phys.Lett. B776 (2018) 345-349.
- S. Rasanen and E. Tomberg 2018.
- C. P. Burgess, H. M. Lee and M. Trott JHEP 09 (2009) 103.
- J. L. F. Barbon and J. R. Espinosa Phys. Rev. D79 (2009) 081302.
- M. P. Hertzberg JHEP 11 (2010) 023.
 - F. Bezrukov, J. Rubio and M. Shaposhnikov 2014.