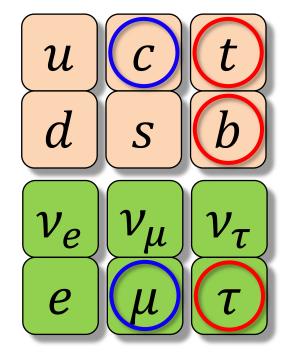


Higgs boson decays to two fermions and production in association with $t\bar{t}$ at the ATLAS experiment

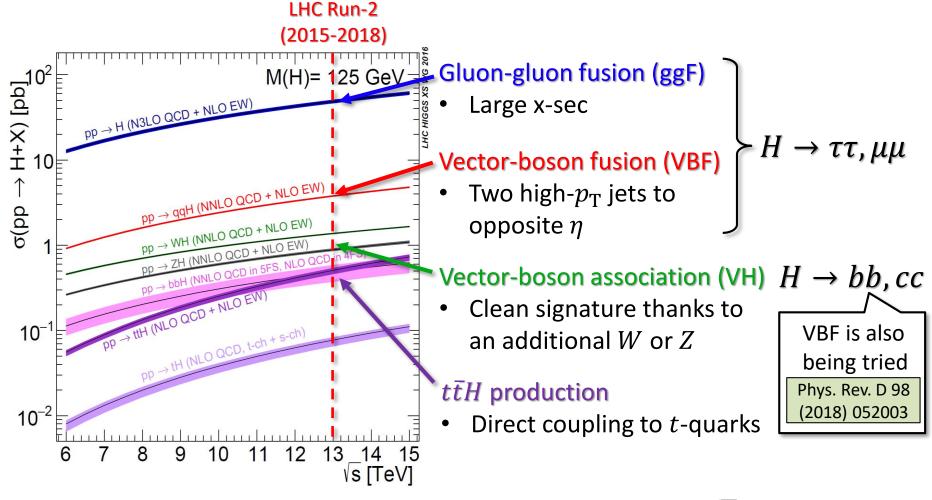
11 February 2019, LLWI 2019 Shigeki Hirose

On behalf of the ATLAS Collaboration


Higgs-Fermion Coupling

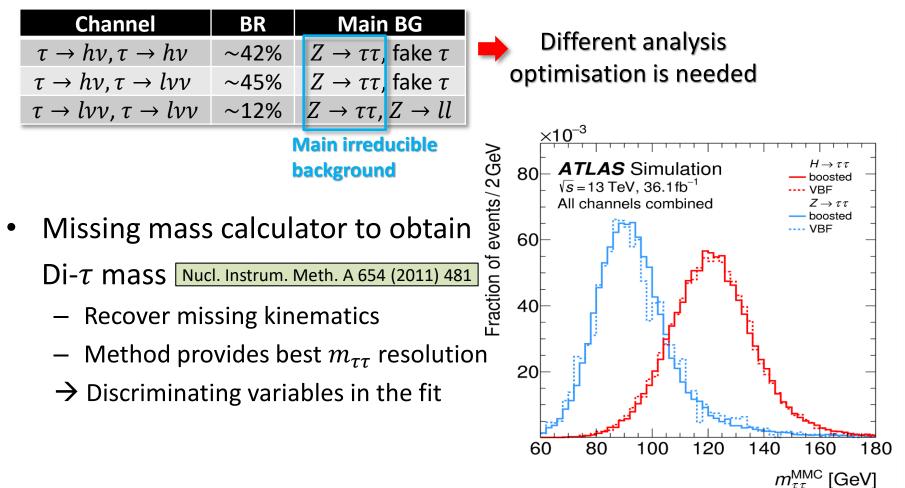
- Higgs boson was discovered in 2012 by ATLAS and CMS
 - Next: precise understanding of its properties
- Yukawa interaction
 - Origin of the fermion mass in SM
 - But is it the full picture?
- LHC has provided O(10⁷) Higgs bosons

Only Higgs factory currently in operation


- Higgs coupling to all of the 3rd-gen.
 fermions have been confirmed
- Measurements for the 2nd-gen. fermions are also being pursed

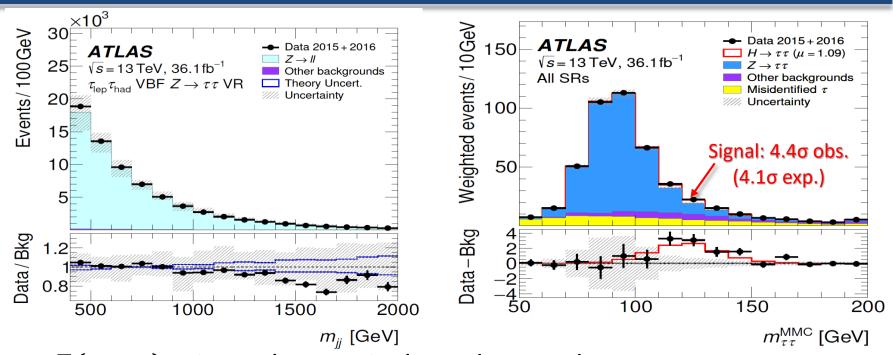
$$\mathcal{L} = -\frac{1}{4} F_{\mu\nu} F^{\mu\nu} + i\bar{\psi}\bar{\psi}\psi + h.c.$$
$$+i\bar{\psi}Y\psi\phi + h.c.$$
$$+|D_{\mu}\phi|^{2} - V(\phi)$$

Recent Measurements at ATLAS


- 4 main production processes at LHC
 - Different measurements use different signatures



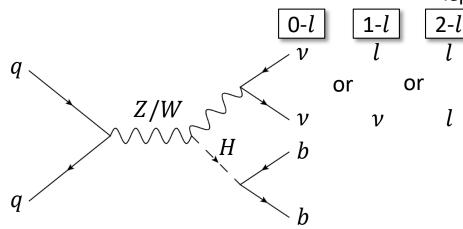
Results use 36.1-79.8 fb⁻¹ recorded in 2015-17 (\sqrt{s} = 13 TeV)


$\blacksquare H \rightarrow \tau \tau: \text{Analysis Strategy}$

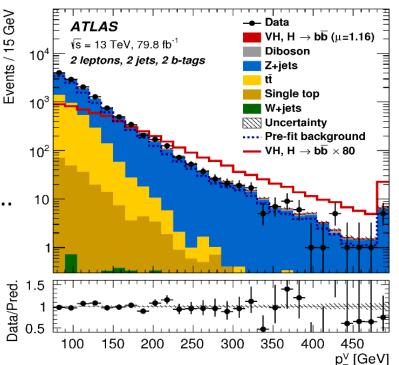
- Cleaner signature compared to other fermionic final states
 - Still reconstruction of two τ 's is challenging
- Three different di- τ final states

$H \rightarrow \tau \tau$: Results

- $Z(\rightarrow \tau \tau)$ + jet to be precisely understood
 - Kinematics affects $m_{ au au}$ shape
 - It is checked with $Z(\rightarrow ll)$ + jet samples
 - \rightarrow MC distributions agree with data within generator uncertainty (Sherpa)
- Run-1 + 2: 6.4 σ observed (5.4 σ expected)
 - ATLAS standalone observation of $H \rightarrow \tau \tau$
 - STXS is also measured

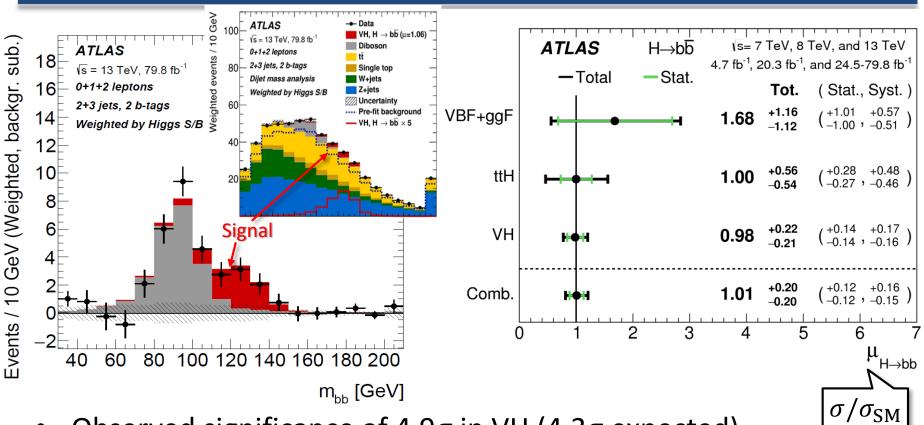

Phys. Lett. B 786 (2018) 59; 79.8 fb⁻¹

$\blacksquare H \rightarrow bb \text{ (VH Production)}$

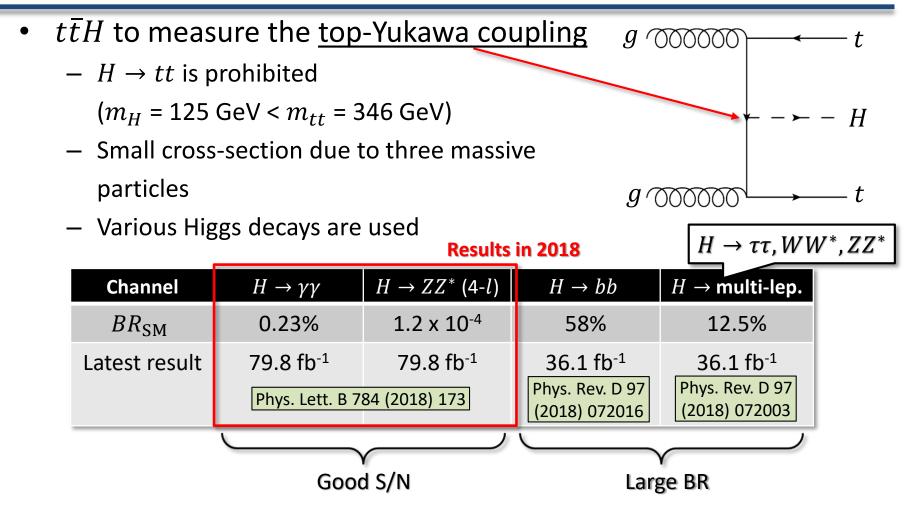

- Huge background from $pp \rightarrow bb$ ($\sigma_b = O(10^7)$ times $\sigma_{H \rightarrow bb}$!)
 - Use the VH process

 \rightarrow Small x-sec but much cleaner thanks to V decaying leptonically

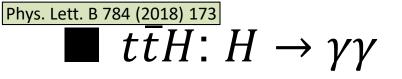
Event categorisation based on N_{leptons}



- Multivariate analysis based on BDT
 - Inputs from kinematics: m_{bb} , p_T of V, ...
 - Main backgrounds are normalised by control region measurements in combined fit

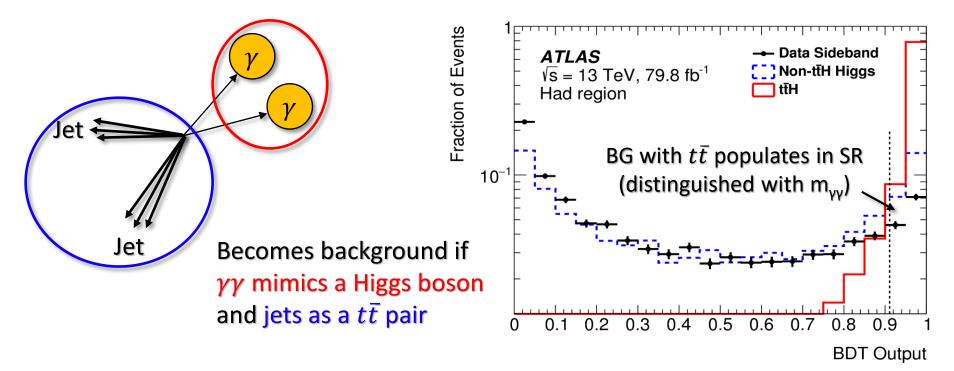

Phys. Lett. B 786 (2018) 59; 79.8 fb⁻¹

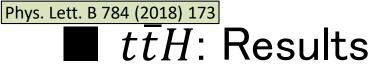
$H \rightarrow bb$: Results



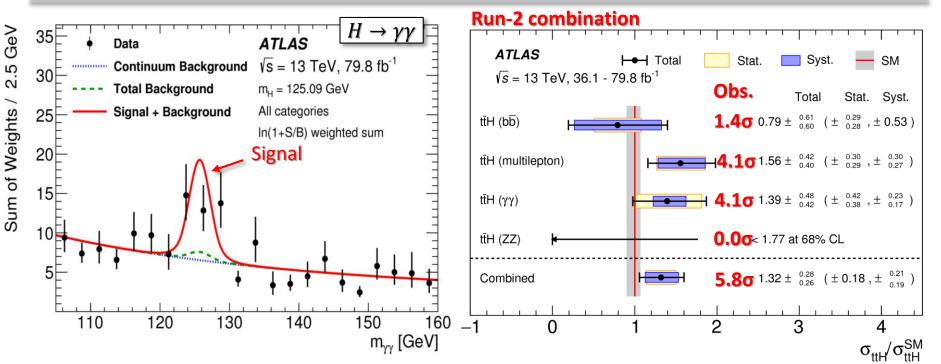
- Observed significance of 4.9σ in VH (4.3σ expected)
- Combined with Run-1 result and all the processes, First observation of $H \rightarrow bb$ with 5.4 σ achieved (5.5 σ exp.)
- STXS results on VH(*bb*) ATLAS-CONF-2018-053

$\blacksquare t\bar{t}H$: Measurement Strategy


• $H \rightarrow$ multi-lepton and $H \rightarrow \gamma \gamma$ are sensitive channels



Categorisation depending on t-quark decay

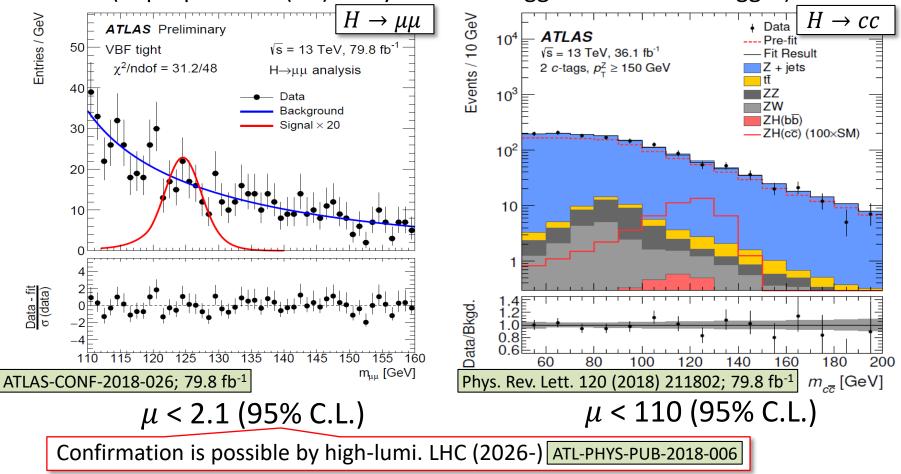

Channel	Hadronic	Leptonic
Requirement	\geq 2 jets + 2 <i>b</i> -jets 0 <i>l</i> (isolated)	2 <i>b</i> -jets 1 <i>l</i> (isolated)
Targetted t decay	$\begin{array}{l} t \rightarrow bW(\rightarrow qq) \\ t \rightarrow bW(\rightarrow qq) \end{array}$	$\begin{array}{l} t \rightarrow bW(\rightarrow qq) \\ t \rightarrow bW(\rightarrow l\nu) \end{array}$

• Main BG: jets + $\gamma\gamma$ background

- First evidence of the $t\bar{t}H(\rightarrow\gamma\gamma)$ process
 - Observed significance is 4.1σ (3.7σ expected)
- Combination with other three channels (Run-1 + 2):

6.3σ observed (5.1σ expected)

Observation of the $t\bar{t}H$ production at ATLAS


Second Generation: $H \rightarrow \mu\mu$ and cc

- BRs are small because of small mass
 - $H \rightarrow \mu\mu$ has clear di- μ signature but small BR: $BR_{SM} = 2.1 \times 10^{-4}$

11/₁₂

 $- H \rightarrow cc$ is very difficult in *c*-jet separation from *b*- and light-jets

(Repurposed ZH(bb) analysis with c-tagger instead of b-tagger)

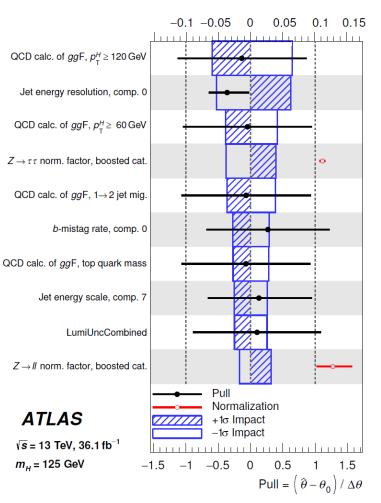
12/12

ATLAS-CONF-2018-031

Summary and Prospects

- Results from 36.1-79.8 fb⁻¹ data are presented at $\sqrt{s} = 13$ TeV
 - Most of them are included in the latest experimental combination by ATLAS
- ATLAS established Higgs-boson coupling to the 3-gen fermions
 - Measured couplings are consistent with the SM prediction
- $k_F \frac{m_F}{\sqrt{2}}$ or $\sqrt{k_V \frac{m_V}{\sqrt{2}}}$ ATLAS Preliminary √s = 13 TeV, 36.1 - 79.8 fb⁻¹ = 125.09 GeV, |y , |< 2.5 10^{-2} 10^{-3} 10-1.3 1.2 1.1 0.9 0.8 0.7 10^{-1} 10² 10
 - Particle mass [GeV]
- We have more data: 140.5 fb⁻¹ are collected at \sqrt{s} = 13 TeV
 - More interesting results with more statistics will be coming soon

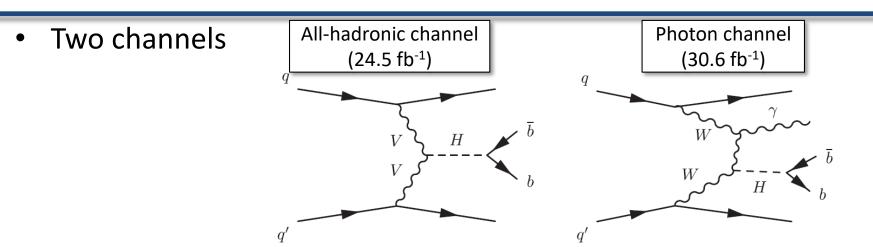
arXiv: 1811.08856; 36.1 fb⁻¹

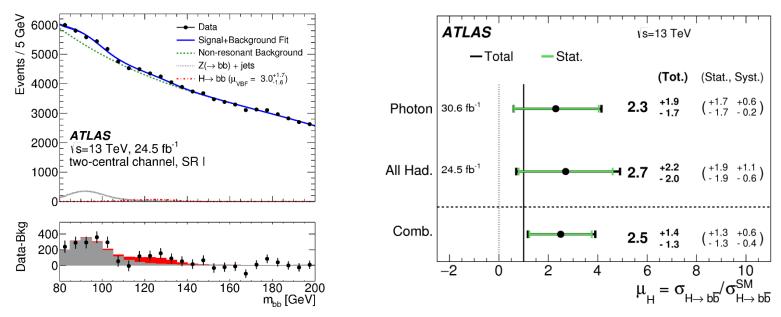

$\blacksquare H \rightarrow \tau\tau$: Triggers and Cuts

• Triggers and cuts

	Analysis channel	Trigger	Analysis <i>p</i> 2015	_T requirement [GeV] 2016	
	$ au_{\rm lep} au_{\rm lep}$ & $ au_{\rm lep} au_{\rm had}$	Single electron Single muon	25 21	27 27	
	$ au_{ m lep} au_{ m lep}$	Dielectron Dimuon Electron+muon	15 / 15 19 / 10 18 / 15	18 / 18 24 / 10 18 / 15	
	$ au_{ m had} au_{ m had}$	Di- $\tau_{\rm had-vis}$	40 / 30	40 / 30	
τ ee/μμ	$e\mu$		$ au_{\mathrm{lep}} au_{\mathrm{had}}$	$ au_{ m had}$	$ au_{ m had}$
	2, $N_{\tau_{\text{had-vis}}}^{\text{loose}} = 0$ am, gradient iso.		$1, N_{ au_{had-vis}}^{loose}$ lium, gradien		$N_{\tau_{\text{had-vis}}}^{\text{loose}} = 2$
	site charge m _Z – 25 GeV	Opp	vis: Medium posite charge v < 70 GeV		: Tight e charge
$30 < m_{\ell\ell} < 75 \text{ GeV}$ $E_{\rm T}^{\rm miss} > 55 \text{ GeV}$ $E_{\rm T}^{\rm miss, hard} > 55 \text{ GeV}$	$\begin{bmatrix} 30 < m_{\ell\ell} < 100 \\ E_{\rm T}^{\rm miss} > 20 {\rm Ge} \end{bmatrix}$	GeV	$ss > 20 \mathrm{GeV}$	$E_{\rm T}^{\rm miss} >$	20 GeV
ΔR_{i}	$\tau_{\tau\tau} < 2.0$		$R_{\tau\tau} < 2.5$	$0.8 < \Delta R$	••
0.1 <	$ x_{1} < 1.5$ $ x_{1} < 1.0$	0.1	$\eta_{\tau\tau} < 1.5 < x_1 < 1.4$	$ \Delta \eta_{\tau\tau} $ 0.1 < x	t ₁ < 1.4
$p_{\mathrm{T}}^{j_{1}}$ >	$x_2 < 1.0$ > 40 GeV -jets = 0	$p_{\mathrm{T}}^{j_1}$	$< x_2 < 1.2$ > 40 GeV $V_{b-jets} = 0$	0.1 < x $p_{\rm T}^{j_1} > 70 {\rm GeV}$	-

arXiv: 1811.08856; 36.1 fb⁻¹ $H \rightarrow \tau \tau$: Systematic Uncertainties

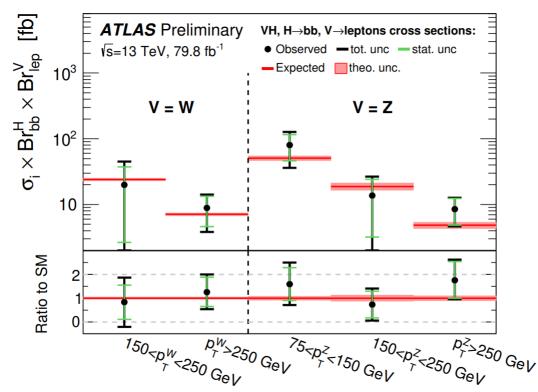

Source of uncertainty	Impact $\Delta \sigma / \sigma_{H \to \tau \tau}$ [%]		
	Observed	Expected	
Theoretical uncert. in signal	+13.4 / -8.7	+12.0 / -7.8	
Background statistics	+10.8 / -9.9	+10.1 / -9.7	
Jets and $E_{\rm T}^{\rm miss}$	+11.2 / -9.1	+10.4 / -8.4	
Background normalization	+6.3 / -4.4	+6.3 / -4.4	
Misidentified $ au$	+4.5 / -4.2	+3.4 / -3.2	
Theoretical uncert. in background	+4.6/ -3.6	+5.0 / -4.0	
Hadronic $ au$ decays	+4.4 / -2.9	+5.5 / -4.0	
Flavor tagging	+3.4 / -3.4	+3.0 / -2.3	
Luminosity	+3.3 / -2.4	+3.1 / -2.2	
Electrons and muons	+1.2 / -0.9	+1.1 / -0.8	
Total systematic uncert.	+23 / -20	+22 / -19	
Data statistics	± 16	±15	
Total	+28 / -25	+27 / -24	


Impact = $\Delta \sigma_{H \to \tau\tau} / \sigma_{H \to \tau\tau}$

Phys. Rev. D 98 (2018) 052003

$\blacksquare H \rightarrow bb \text{ (VBF Production)}$

- BDT is trained w.r.t. main backgrounds
 - Non-resonant multi jets (+ photon in the case of the photon channel)



■ Stage-1 STXS Results

• $H \to \tau \tau$ arXiv: 1811.08856; 36.1 fb⁻¹

Process	Particle-level selection	σ [pb]	$\sigma^{ m SM}$ [pb]	In good agreement
ggF ggF VBF	$N_{\text{jets}} \ge 1, 60 < p_{\text{T}}^{H} < 120 \text{GeV}, y_{H} < 2.5$ $N_{\text{jets}} \ge 1, p_{\text{T}}^{H} > 120 \text{GeV}, y_{H} < 2.5$ $ y_{H} < 2.5$	$1.79 \pm 0.53 \text{ (stat.)} \pm 0.74 \text{ (syst.)}$ $0.12 \pm 0.05 \text{ (stat.)} \pm 0.05 \text{ (syst.)}$ $0.25 \pm 0.08 \text{ (stat.)} \pm 0.08 \text{ (syst.)}$	0.14 ± 0.03	with the SM expectation

• $H \rightarrow bb$ Atlas-Conf-2018-053

Phys. Lett. B 786 (2018) 59; 79.8 fb⁻¹

\blacksquare $H \rightarrow bb$: Systematic Uncertainties

Source of uncertainty		σ_{μ}	
Total		0.259	
Statistical		0.161	
Systematic		0.203	
Experimenta	l uncertainties		
Jets		0.035	
$E_{\mathrm{T}}^{\mathrm{miss}}$		0.014	
Leptons		0.009	
	b-jets	0.061	
b-tagging	c-jets	0.042	
	light-flavour jets	0.009	
	extrapolation	0.008	
Pile-up		0.007	
Luminosity		0.023	
Theoretical and modelling uncertainties			
Signal		0.094	
Floating normalisations 0.035			
Z + jets		0.055	
W + jets		0.060	
$t\bar{t}$		0.050	
Single top quark		0.028	
Diboson		0.054	
Multi-jet		0.005	
-			
MC statistic	0.070		