



# The role of the CMS trigger in Higgs sector observations and searches for new resonances in Run II

#### Cristina Martin Perez

LLR / CNRS - Ecole Polytechnique Paris

on behalf of the CMS Collaboration

#### Lake Louise Winter Institute

11 February 2019 Alberta, Canada

#### The CMS detector

- Multipurpose experiment at the LHC, CERN.
- Broad physics program:
   Higgs Physics, SM precision measurements, BSM searches...
- Outstanding performance in the harsh experimental conditions of **Run II**:
  - Peak lumi 2.1x10<sup>34</sup> cm<sup>-2</sup>s<sup>-1</sup>
  - Pileup up to 80!
- 163 fb<sup>-1</sup> of p-p collision data during Run II.



|             | Run I (2010-12)                                     | Run II (2015-18)                                    |
|-------------|-----------------------------------------------------|-----------------------------------------------------|
| Energy      | 7-8 TeV                                             | 13 TeV                                              |
| Inst. Lumi. | 7x10 <sup>33</sup> cm <sup>-2</sup> s <sup>-1</sup> | 2x10 <sup>34</sup> cm <sup>-2</sup> s <sup>-1</sup> |
| PU          | 25                                                  | 50                                                  |



# The CMS trigger system

- LHC bunch crossing rate: ~40 MHz → data storage unsustainable.
- Trigger system: fast selection of interesting events based on kinematic cuts.
- Successive steps: rate reduction, increased granularity and complexity.



# The CMS trigger upgrade in Run II

The experimental challenges of Run II lead to the **upgrade** of the L1 trigger HW and strategy (2016):

#### Calorimetric trigger (e, γ, τ<sub>h</sub>, jet, sums)

- Improved granularity: better E<sub>T</sub>/position resolution
- Improved object isolation: better particle ID
- Implementation of **PU estimation**/subtraction: resilience to LHC conditions

#### +

#### **Muon trigger** (μ)

From detector-oriented to **geometry**-oriented: no redundancy, higher efficiency, lower rate



#### Global trigger (Trigger menu)

More sophisticated object candidates, more algorithms, with more complex correlations





Trigger Upgrade <u>TDR</u>

# The CMS trigger menu

- Extensive list of algorithms in the Global Trigger designed to select potentially interesting events.
- Starting point of the CMS physics program: maximize physics acceptance and background rejection.
- Flexible and scalable: evolve with CMS physics interests and adapt to the changes of LHC parameters.
- Up to 512 algorithms with:
  - Single/multiple objects (single-µ, dijet...)
  - Cross-object triggers (τ+e...)
  - Kinematic cuts (E<sub>T</sub>, η, φ)
  - Topological correlations (Δη, Δφ, ΔR)
  - Invariant mass (W, Z, VBF)



# The CMS Higgs physics program

(1) PLB 779 (2018) 283 (2) PRL 121 (2018) 121801 (3) PRL 120 (2018) 231801

#### Precision measurements

- Mass/width, anomalous couplings, diff. x-sections.
- High-resolution channels:
   H→γγ,H→ZZ→4I
- μ, e, γ trigger selection and resolution essential.



#### Couplings to fermions

- Recent observations:
  - $\bullet \quad \mathsf{H} \to \mathsf{TT}(1), \ \mathsf{H} \to \mathsf{bb}(2)$
  - ttH(3) process
- Efficiently triggered in Run II and accumulated large statistics.



#### Rare processes

- H→μμ, HH...
- Trigger optimisation enhanced sensitivity.



#### **BSM** searches

- Additional Higgs scalars,
   H→invisible...
- Relied on energy imbalance triggers.

# The CMS Level-1 µ trigger

- From detector- to **geometry-oriented**: simultaneous information from the three overlapping detectors (DT, RPC, CSC).
- Combined track finders (BMTF/OMTF/ EMTF) assign p<sub>T</sub>, position and quality criteria to each candidate.





Great handle for  $H \rightarrow ZZ^* \rightarrow 4\mu$ precision measurements



# The CMS Level-1 e/y trigger

Low

- Identification of e/y candidates through shape and ECAL/HCAL deposits.
- **Pileup estimation** based on energy deposit in center of detector.
- **Isolation** requirements (vs. jets) dependent on pileup and position, relaxed with p<sub>T</sub> for maximal efficiency.





#### thresholds **Typical L1 thresholds**

- Single-e $\chi$  > 30 GeV
- Double-e $\chi$  > 25,14 GeV
- Triple-e $\gamma$  > 18,17,8 GeV





**Photon** selection essential in  $H \rightarrow yy$ , most sensitive channel



More results: HGG. HWW

## The CMS Level-1 Th trigger

- **Dedicated hadronic τ** algorithm implemented at HW-level for the first time for Run II.
- Merging hadronic decay products into single candidate.
- Pileup estimation based on energy deposit in center of detector.
- Isolation (against jets) dependent on position, energy and pileup, and relaxed with p<sub>T</sub> for maximal efficiency.

thresholds
Single- $\tau$  > 120 GeV
Double- $\tau$  > 34,34 GeV
T-ey > 22,26 GeV

Clusters

Isolation area

More results: HTT

H→TT observed in 2017 thanks to a dedicated Th algorithm







# The CMS Level-1 jet / sums triggers

- Dynamic clustering and overlap removal.
- Pileup energy computed based on deposit around jet candidate and subtracted from jet energy.
- Computation of global energy sums: scalar transverse jet energy (HT) and missing transverse energy (MET).
- The L1 jet trigger played a crucial role in the H→bb and ttH (fully hadronic) observations.
- The L1 sums trigger is the starting point of H→inv. searches.



#### **Typical L1 thresholds**

- MET > 110 GeV
- HT > 300 GeV





More results: <u>Hbb</u>, <u>ttH</u>, <u>Hinv</u>

# The CMS Level-1 VBF trigger

- Introduced after the trigger upgrade, it is the first trigger targeting a Higgs production mode, not a decay mode.
- Characteristic signature:
  - VBF jets with high invariant mass and angular separation
  - Higgs boson decay products in central part of the detector



- at least one jet with E<sub>T</sub> > 115 GeV
- at least two jets with E<sub>T</sub> > 40 GeV
   and m<sub>ii</sub> > 620 GeV
- Complement to classic triggers: expansion of the phase space and improvement of sensitivity.



- VBF contributes as ~10% to the Higgs production and is the most sensitive channel in H→TT analysis.
- The VBF trigger provided in 2017 ~40% additional VBF H→ττ events with respect to the Double-τ trigger alone.

#### Conclusions

- The CMS trigger menu is the starting point of many physics analysis and it evolves with the collaboration interests and accelerator parameters.
- The CMS L1 trigger was upgraded for the challenging conditions of Run II:
  - More sophisticated object algorithms (isolation, PU resilence)
  - Complex correlations among objects (invariant masses)
  - Analysis-targeted algorithms (VBF)
- The Run II L1 trigger upgrade showed extremely good performance, being able to maintain the nominal thresholds and excellent efficiencies in spite of the LHC high pileup and instantaneous luminosities.
- This enabled an exhaustive and complete coverage of CMS Higgs physics program during Run II, where the trigger played a key role in the H→ττ, H→bb and ttH observations.

#### Thank you for your attention

#### Further reading:

- Trigger upgrade TDR
- Run-I trigger
- Level-1 trigger performance

# The CMS Level-1 trigger



Figure 2: Diagram of the Level-1 trigger systems during Run-2.

## The CMS Level-1 µ trigger



## The CMS Level-1 µ trigger



# The CMS Level-1 e/y trigger



 $E+H_{6x9}-E_{2x5}-H_{1x2}$ <isolation cut











#### The CMS Level-1 Th trigger



$$E_{T,iso}^{\tau} = E_T^{6x9} - E_{T,raw}^{\tau}$$



| Decay mode                                                     | Meson resonance | B[%] |
|----------------------------------------------------------------|-----------------|------|
| $	au^-  ightarrow e^- \overline{ u}_e   u_	au$                 |                 | 17.8 |
| $	au^- 	o \mu^-  \overline{ u}_\mu   u_	au$                    |                 | 17.4 |
| $\tau^-  ightarrow h^-  u_{	au}$                               |                 | 11.5 |
| $	au^-  ightarrow 	ext{h}^- \pi^0  u_	au$                      | $\rho(770)$     | 26.0 |
| $	au^-  ightarrow \mathrm{h}^-  \pi^0  \pi^0   u_	au$          | $a_1(1260)$     | 9.5  |
| $	au^-  ightarrow 	ext{h}^- 	ext{h}^+ 	ext{h}^-  u_	au$        | $a_1(1260)$     | 9.8  |
| $	au^-  ightarrow 	ext{h}^- 	ext{h}^+ 	ext{h}^- \pi^0   u_	au$ |                 | 4.8  |
| Other modes with hadrons                                       |                 | 3.2  |
| All modes containing hadrons                                   |                 | 64.8 |









#### The CMS Level-1 jets and sums trigger











## The CMS Level-1 VBF trigger

L1 M<sub>ii</sub> [GeV]



#### Pileup



#### Menu

|                              | #Instances | Width [bits] | Quantities                                                  |
|------------------------------|------------|--------------|-------------------------------------------------------------|
| Muon                         | 8          | 64           | $\phi$ , $\eta$ , $p_T$ , quality, charge, and charge valid |
| Jet                          | 12         | 32           | $\phi$ , $\eta$ , $E_{\rm T}$ , quality                     |
| $e/\gamma$                   | 12         | 32           | $\phi$ , $\eta$ , $E_{\rm T}$ , isolation, quality          |
| Tau                          | 12         | 32           | $\phi$ , $\eta$ , $E_{\rm T}$ , isolation, quality          |
| HF min. bias                 | 4          | 4            | One instance per detector side, two thresholds.             |
| Tower count                  | 1          | 13           | $E_{ m T}$                                                  |
| $E_{\rm T}$ , $E_{\rm TTEM}$ | 1          | 12           | $E_{ m T}$                                                  |
| $H_{ m T}$                   | 1          | 12           | $E_{ m T}$                                                  |
| $E_{T,miss}$                 | 1          | 20           | $\phi$ , $E_{\rm T}$                                        |
| $H_{ m T,miss}$              | 1          | 20           | $\phi$ , $E_{\rm T}$                                        |
| $E_{T,HF,miss}$              | 1          | 20           | $\phi$ , $E_{\rm T}$                                        |
| $H_{T,HF,miss}$              | 1          | 20           | $\phi$ , $E_{\mathrm{T}}$                                   |

# **Higgs Physics**



