Searching for Nuclear Recoils from Dark Matter with SuperCDMS

Emanuele Michielin on behalf of the SuperCDMS Collaboration

University of British Columbia

Lake Louise Winter Institute 2019
February 11th 2019

Which is your favourite dark matter candidate?

Amongst these many scenarios, SuperCDMS looks for scattering interactions of low-mass ($< 10 \,\mathrm{GeV}/c^2$) dark matter particles with standard model particles.

Toward lower masses...

SuperCDMS detector technology

- High-purity mK cryogenic Ge and Si crystals
- Phonons measured via transition edge sensors
- Ionization measured via interleaved electrodes

Energy threshold key to extend the search to lower masses

SuperCDMS detectors: Interleaved Z-sensitive Ionization Phonon (iZIP)

- $\Delta V < 10 \,\mathrm{V}$ top to bottom
- Phonon and ionization signal measurements \rightarrow allow for electron/nuclear recoil (ER/NR) discrimination
- Goal 100% nuclear recoil discrimination for NR DM search

Pushing for lower masses: CDMSlite operating mode

- Observed phonon energy = $E_{\text{Recoil}} + E_{\text{NTL}}$
- E_{NTL} energy from Neganov-Trofimov-Luke effect: phonons created by drifting charges
- E_{NTL} proportional to ΔV $(E_{NTL} = e\Delta V N_{e/h})$

 $\Delta V \sim 100 \,\mathrm{V}$: lower threshold but no ER/NR discrimination

CDMSlite Run 3 • arXiv:1808.09098

- Single iZIP detector in CDMSlite mode, $\Delta V = 75 \,\mathrm{V}$
- From February to May 2015, total of $36 \, \mathrm{kg\text{-}day}$
- Energy threshold of 70 eV

- First blind analysis with the CDMSlite detector
- Data salting: fraction of the DM-search events are replaced with artificial signal-like events

CDMSlite Run 3 ingredients to boost sensitivity

Efficient discrimination of instrumental backgrounds

- Low-frequency noise (LF) from cryostat vibrations
- Three handles combined in two uncorrelated BDTs:
 - 1 Pulse shape discrimination
 - 2 Time variable correlated with the cryostat vibration
 - 3 Detector-detector data correlations

 0.4 ± 0.1 LF noise event leaking past cuts

CDMSlite Run 3 ingredients to boost sensitivity

Backgrounds modeling

- ⁷¹Ge peaks
- Cosmogenics, specifically Tritium
- Compton scattering
- Decay products from ²¹⁰Pb contamination

Modeled using Monte Carlo simulations and data-driven fits

CDMSlite Run 3 ingredients to boost sensitivity

Profile likelihood analysis

- CDMSlite Run 2 analysis set the limit treating all the events as signal candidates (optimum interval method)
- Background models allow profile likelihood WIMP limit
 - ▶ Allow for discovery claim
 - ▶ Naturally incorporates systematic uncertainties

- Nuisance parameters include uncertainties on efficiency, detector resolution and ionization yield
- P-value of 0.988 that data are consistent with background model

CDMSlite Run 3 result • arXiv:1808.09098

- Limit set using CL_S method
- ≈ 2.5 improvement over CDMSlite Run 2 at 5 GeV, which had about double the exposure PRD 97.022002

Looking forward.. SuperCDMS SNOLAB

- Background reduction from Soudan (2090 mwe) to SNOLAB (6010 mwe) and improved low-activity shielding
- Lower operating temperature for less noise and better resolution

- Bigger (more fiducial volume) higher purity (less radioactive impurities)
 Ge and Si crystals
- 12 iZIP detectors with full ER/NR discrimination down to $\sim 1 \, \mathrm{keV}$
- 12 HV detectors with 10 eV in Ge and 5 eV in Si resolution for lower threshold

Start data taking in 2020

SuperCDMS SNOLAB goal ParXiv:1610.00006

Conservative projected sensitivity.

As shown in CDMSlite Run 3 analysis, backgrounds modeling and likelihood analysis are the way to get the most from our data. True especially for HV detectors

	iZIP		$_{ m HV}$	
	${\rm Ge}$	$_{ m Si}$	${\rm Ge}$	Si
Number of detectors	10	2	8	4
Total exposure (kg·yr)	56	4.8	44	9.6
Phonon resolution (eV)	50	25	10	5
Ionization resolution (eV)	100	110	-	-
Voltage Bias (V)	6	8	100	100

Run 3 fiducial volume cut

- Events at high radius receive reduced NTL amplification, are reconstructed at lower energy. Must remove for likelihood fit
- Design cut to remove radial regions where reduced NTL events fall

Bifurcated analysis setup

Two uncorrelated BDT variables are formed using the three different handles on discriminating LF noise

- Branch A: primarily pulse shape discrimination information
- Branch B: primarily cryostat vibration and detector-detector correlation information

Bifurcated analysis to get the noise event leaking past cuts

3/4

SNOLAB backgrounds

- Dominant background: in-crystal ³H, ³²Si, ⁶⁸Ge
- Line-of-sight contamination from ²¹⁰Pb
- Material and cavern contamination: ⁴⁰K, ⁶⁰Co

"Singles" Background Rates	Electron Recoil				Nuclear Recoil (×10 ⁻⁶)		
(counts/kg/keV/year)	Ge HV	Si HV	$Ge\ iZIP$	Si iZIP	Ge iZIP	Si iZIP	
Coherent Neutrinos					2300.	1600.	
Detector-Bulk Contamination	21.	290.	8.5	260.			
Material Activation	1.0	2.5	1.9	15.			
Non-Line-of-Sight Surfaces	0.00	0.03	0.01	0.07	-	_	
Bulk Material Contamination	5.4	14.	12.	88.	440.	660.	
Cavern Environment	-	-	-	_	510.	530.	
Cosmogenic Neutrons					73.	77.	
Total	27.	300.	22.	370.	3300.	2900.	