

 ∂

COSINE-100 Results: DAMA's Signal Not Spin-Independent WINPS

Lake Louise Winter Institute Feb 12, 2019

Estella Barbosa de Souza on behalf of the COSINE-100 collaboration

Yale University

DAMA's Signal Not Spin-Independent WIMPs

"I'ER ΕÏ

An experiment to search for dark-matter interactions using sodium iodide detectors

Nature 564, 83–86 (2018)

https://doi.org/10.1038/s41586-018-0739-1

Lake Louise Winter Institute 2019

Current Status of the Field

Estella B. de Souza - Yale University

Current Status of the Field

Estella B. de Souza - Yale University

Lake Louise Winter Institute 2019

Direct Detection

Current Status of the Field

Estella B. de Souza - Yale University

Lake Louise Winter Institute 2019

Direct Detection

Estella B. de Souza - Yale University

The DAMA Experiment

- Nal(TI) experiment: 250 kg @ LNGS
- Avg background: ~1 count/keV/kg/day
- Looking for annual modulation of rate

- - Use same target material: Nal(TI)
- Have low enough backgrounds: modulation amplitude is small
- Look for time dependent components in backgrounds

Estella B. de Souza - Yale University

Nal(TI) Global Effort

Yangyang 🖈

<u>KIMS</u> (+ DM-Ice)

COSINE-100

★ Kamioka

Eur.Phys.J. C 78 (2018) 107 Eur.Phys.J. C 78 (2018) 490 Eur.Phys.J. C 77 (2017) 437 JINST 13 (2018) T02007 🃡 Phys.Rev. D 90 (2014) 052006(Csl) Nature, **564**, 83-86 (2018)

Estella B. de Souza - Yale University

COSINE-100

- DM-Ice + KIMS collaborations = COSINE
- 106 kg of Nal(TI) from Alpha Spectra
- 2 tons of passive liquid scintillator veto for background tagging
- Location: YangYang Underground Laboratory (Y2L), South Korea (~700 m rock overburden)

Physics run: Since Sept 2016

COSINE-100

- DM-Ice + KIMS collaborations = COSINE
- 106 kg of Nal(TI) from Alpha Spectra
- 2 tons of passive liquid scintillator veto for background tagging
- Location: YangYang Underground Laboratory (Y2L), South Korea (~700 m rock overburden)

Physics run: Since Sept 2016

COSINE-100 Shielding Structure

Plastic Scintillators

Lake Louise Winter Institute 2019

COSINE-100 Nal(TI) Crystals

Crystal	Mass	Size (inches	Powder	α Rate	40 K	²³⁸ U	232 Th	Light Y
	(kg)	$diameter \times length)$		(mBq/kg)	(ppb)	(ppt)	(ppt)	(PEs/k)
Crystal-1	8.3	5.0 imes 7.0	AS-B	3.20 ± 0.08	34.7 ± 4.7	< 0.02	1.3 ± 0.4	$14.9 \pm$
Crystal-2	9.2	4.2 imes 11.0	AS-C	2.06 ± 0.06	60.6 ± 4.7	< 0.12	$<\!0.6$	$14.6 \pm$
Crystal-3	9.2	4.2 imes 11.0	AS-WSII	0.76 ± 0.02	34.3 ± 3.1	< 0.04	0.4 ± 0.2	$15.5\pm$
Crystal-4	18.0	5.0 imes 15.3	AS-WSII	0.74 ± 0.02	33.3 ± 3.5		< 0.3	$14.9 \pm$
Crystal-5	18.3	5.0 imes 15.5	AS-C	2.06 ± 0.05	82.3 ± 5.5		2.4 ± 0.3	7.3 ± 0
Crystal-6	12.5	4.8×11.8	AS-WSIII	1.52 ± 0.04	16.8 ± 2.5	< 0.02	0.6 ± 0.2	$14.6 \pm$
Crystal-7	12.5	4.8 imes 11.8	AS-WSIII	1.54 ± 0.04	18.7 ± 2.8		$<\!0.6$	$14.0 \pm$
Crystal-8	18.3	5.0 imes 15.5	AS-C	2.05 ± 0.05	54.3 ± 3.8		<1.4	3.5 ± 0
DAMA				< 0.5	< 20	0.7 - 10	0.5 - 7.5	5.5 - 7

Eur. Phys. J. C78 (2018) 107

Intrinsic backgrounds: from crystal powder/growing

R&D goal: intrinsic background ~DAMA's

Light yield: up to 15 p.e./keV

Main challenge: produce crystal with desirable levels of ⁴⁰K & ²¹⁰Pb

COSINE-100 Nal(TI) Crystals

-									
	Crystal	Mass	Size (inches	Powder	α Rate	⁴⁰ K	²³⁸ U	²³² Th	Light Y
		(kg)	$\operatorname{diameter imes length})$		(mBq/kg)	(ppb)	(ppt)	(ppt)	(PEs/k)
	Crystal-1	8.3	5.0 imes 7.0	AS-B	3.20 ± 0.08	34.7 ± 4.7	< 0.02	1.3 ± 0.4	$14.9 \pm$
	Crystal-2	9.2	4.2 imes11.0	AS-C	2.06 ± 0.06	60.6 ± 4.7	< 0.12	$<\!0.6$	$14.6 \pm$
	Crystal-3	9.2	4.2 imes11.0	AS-WSII	0.76 ± 0.02	34.3 ± 3.1	< 0.04	0.4 ± 0.2	$15.5 \pm$
	Crystal-4	18.0	5.0 imes15.3	AS-WSII	0.74 ± 0.02	33.3 ± 3.5		< 0.3	$14.9 \pm$
	Crystal-5	18.3	5.0 imes 15.5	AS-C	2.06 ± 0.05	82.3 ± 5.5		2.4 ± 0.3	7.3 ± 0
	Crystal-6	12.5	4.8 imes 11.8	AS-WSIII	1.52 ± 0.04	16.8 ± 2.5	< 0.02	0.6 ± 0.2	$14.6 \pm$
	Crystal-7	12.5	4.8 imes 11.8	AS-WSIII	1.54 ± 0.04	18.7 ± 2.8		$<\!0.6$	$14.0 \pm$
	Crystal-8	18.3	5.0 imes 15.5	AS-C	2.05 ± 0.05	54.3 ± 3.8		<1.4	3.5 ± 0
	DAMA				< 0.5	< 20	0.7 - 10	0.5 - 7.5	5.5 - 7

Eur. Phys. J. C78 (2018) 107

Intrinsic backgrounds: from crystal powder/growing

R&D goal: intrinsic background ~DAMA's

Light yield: up to 15 p.e./keV

Main challenge: produce crystal with desirable levels of ⁴⁰K & ²¹⁰Pb

COSINE-100 Nal(TI) Crystals

Crystal	Mass	Size (inches	Powder	α Rate	⁴⁰ K	²³⁸ U	²³² Th	Light Y
	(kg)	diameter×length)		(mBq/kg)	(ppb)	(ppt)	(ppt)	(PEs/k
Crystal-1	8.3	5.0 imes 7.0	AS-B	3.20 ± 0.08	34.7 ± 4.7	< 0.02	1.3 ± 0.4	$14.9 \pm$
Crystal-2	9.2	4.2 imes11.0	AS-C	2.06 ± 0.06	60.6 ± 4.7	< 0.12	$<\!\!0.6$	$14.6 \pm$
Crystal-3	9.2	4.2 imes11.0	AS-WSII	0.76 ± 0.02	34.3 ± 3.1	< 0.04	0.4 ± 0.2	$15.5 \pm$
Crystal-4	18.0	5.0 imes 15.3	AS-WSII	0.74 ± 0.02	33.3 ± 3.5		$<\!0.3$	$14.9 \pm$
Crystal-5	18.3	5.0 imes15.5	AS-C	2.06 ± 0.05	82.3 ± 5.5		2.4 ± 0.3	7.3 ± 0
Crystal-6	12.5	4.8 imes 11.8	AS-WSIII	1.52 ± 0.04	16.8 ± 2.5	< 0.02	0.6 ± 0.2	$14.6 \pm$
Crystal-7	12.5	4.8 imes 11.8	AS-WSIII	1.54 ± 0.04	18.7 ± 2.8		$<\!\!0.6$	$14.0 \pm$
Crystal-8	18.3	5.0 imes 15.5	AS-C	2.05 ± 0.05	54.3 ± 3.8		<1.4	3.5 ± 0
DAMA				< 0.5	< 20	0.7 - 10	0.5 - 7.5	5.5 - 7

Eur. Phys. J. C78 (2018) 107

Intrinsic backgrounds: from crystal powder/growing

R&D goal: intrinsic background ~DAMA's

Light yield: up to 15 p.e./keV

Main challenge: produce crystal with desirable levels of ⁴⁰K & ²¹⁰Pb

- Full detector simulation with Geant4 + multi-channel fit: background well modeled
- Main low energy backgrounds:
 - Internals: crystals' intrinsic contaminants - K/U/Th chains
 - Cosmogenics: dominated by ³H in R.O.I (2-20 keV)
 - Surface: ²¹⁰Pb in crystals and teflon surfaces

COSINE-100 Backgrounds

Eur. Phys. J. C78 (2018) 490

COSINE-100 Backgrounds & Fit

- Crystals are fitted simultaneously to a WIMP-signal model, for different WIMP masses

Estimated systematics: resolution, efficiency, energy scale, simulation package, PMT background

Spin-Independent WIMP Search

Estella B. de Souza - Yale University

Annual Modulation Search

Crystals Averaged Rate, 2-6 keV

- Data blinded: only 9% of total data
- Full data analysis will be using 585+

Summary

- COSINE-100 has been running since September 2016.
- signal.
- years of data on the way.

Estella B. de Souza - Yale University

60 days of data strongly disfavors spin-independent WIMPs as the cause for DAMA's

Modulation model independent test: need for 5-year data anticipated. Analysis of 2

Backup

Status of the Field

Lake Louise Winter Institute 2019

Crystal Configuration

Low Energy Spectrum

2 - 4 counts/keV/kg/day in R.O.I

Eur. Phys. J. C 78 107 (2018)

Liquid Scintillator Veto

- The liquid scintillator background is well modeled with simulation

⁴⁰K emits a 1460 keV gamma with 3 keV Auger electron energy deposition in the crystal

Tagging the 1460 keV events with LS enables to veto the 40K 3 keV background events

Lake Louise Winter Institute 2019

Cosmogenics

- Muon veto with 37 plastic scintillator panels
- Events correlated with muon tagged
- Muon-induced events in Nal(TI) under investigation
 - H. Prihitiadi et al 2018 JINST 13 T02007

Muon Detector

COSINE-100 Muon Background

- Muon flux at COSINE-100 is ~3.98 x 10-7/cm²/s (344.29 muons/m²/day)
- Rate has been consistent throughout the physics run
- Muon selection used to veto muon-induced crystal events

Estella B. de Souza - Yale University

Lake Louise Winter Institute 2019

Event Selection: Charge Ratio

noise separation power

Lake Louise Winter Institute 2019

Event Selection: Asymmetry and Charge/Peak

- Additional noise reduction cuts have been developed:
 - Charge asymmetry between 2 PMTs in each crystal
 - Charge/peak: Average charge per SPE
- New development of event selection criteria based on multivariate analysis on going

Estella B. de Souza - Yale University

Lake Louise Winter Institute 2019

Selection Efficiency/Low Energy Spectrum

~70% efficiency at 2 keV

2 - 4 counts/keV/kg/day in region of interest depending on the crystal

Estella B. de Souza - Yale University

a) Crystal 1

Estelia D. ue Souza - raie University

WIMP Analysis

b) Crystal 2

e) Crystal 6 Lake Louise Winter Institute 2013

c) Crystal 3

f) Crystal 7

Crystal Growing R&D

- Needs to grow our own crystal with low(er) background and better understanding of the crystal
- Powder purification system and crystal growers are available at IBS facility
- Went through many trials and errors, found ways to reduce background contamination in powder & improve growth condition of Nal(TI) crystals
- Current measurements show great improvements!

Estella B. de Souza - Yale University

~ 100 kg NaI crystal (ingot) grower

Piping & Instrument Diagram

Possible Joint Analysis: COSINE-100 + ANAIS

