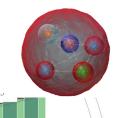


LHCb results from heavy quark spectroscopy, exotic states and QCD

Vladimir Macko

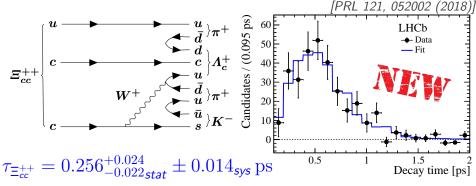
Introduction


Personal selection of the latest LHCb results from:

Heavy quark spectroscopy States with two or three heavy quarks

► Exotic states
States with four
or five quarks

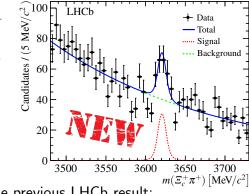
RICH1



Doubly charmed baryon Ξ_{cc}^{++}

Predicted by Quark Model, unique for QCD tests

- ► LHCb: observation of Ξ_{cc}^{++} [PRL 119, 112001 (2017)] $m_{\Xi_{cc}^{++}} = 3621.40 \pm 0.72_{stat} \pm 0.27_{syst} \pm 0.14_{\Lambda_c} \frac{\text{MeV}}{[PRL 89, 112001 (2002)]}$ ► 103 MeV SELEX discrepancy, SELEX remains unconfirmed
- ► LHCb: Ξ_{cc}^{++} lifetime from $\Xi_{cc}^{++} \to \Lambda_c^+ K^- \pi^+ \pi^+$ using MVA selector, background subtraction with *sPlot*



Doubly charmed baryon Ξ_{cc}^{+}

Predicted by Quark Model, unique for QCD tests [PRL 121, 162002 (2018)]

$$egin{aligned} egin{aligned} egin{aligned\\ egin{aligned} egi$$

LHCb: First observation of $\Xi_c^{++} \rightarrow \Xi_c^+ \pi^+$ using MVA selector

Measured mass agrees with the previous LHCb result: $m_{\Xi_{st}^{++}} = 3620.6 \pm 1.5_{stat} \pm 0.4_{sys} \pm 0.3_{\Xi_{st}^{+}} \text{ MeV}$

The ratio of branching fractions measured:
$$\frac{\mathcal{B}_{\equiv_{cc}^{++} \to \equiv_{c}^{+} \pi^{+}} \times \mathcal{B}_{\equiv_{c}^{+} \to pK^{-} \pi^{+}}}{\mathcal{B}_{\equiv_{cc}^{++} \to \Lambda_{c}^{+} K^{-} \pi^{+}} \times \mathcal{B}_{\Lambda_{c}^{+} \to pK^{-} \pi^{+}}} = 0.035 \pm 0.009_{stat} \pm 0.003_{sys}$$

[PRL 121, 162002 (2018)]

 Ξ_b^- baryon Sensitive probe of SM and beyond

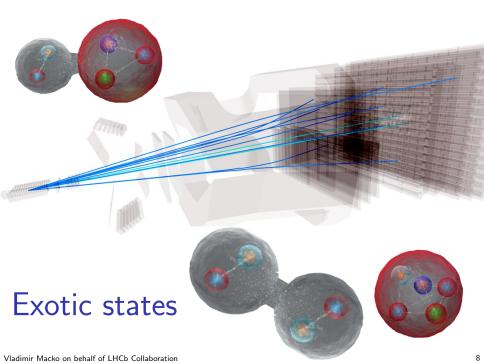
Fragmentation fractions f needed for absolute branching ratio measurements

LHCb: **First** measurement of Ξ_b^- production rate relative to that of Λ_b^0 baryon, $f_{\Xi_b^-}/f_{\Lambda_b^0}$, and of $m_{\Xi_b^-}$ using $\Xi_b^- \to J/\psi \Xi_{(\to \Lambda \pi^-)}^-$ and $\Lambda_b^0 \to J/\psi \Lambda$ with $J/\psi \to \mu^+\mu^-$ and $\Lambda \to p\pi^-$ [arXiv:1901.07075 (2019)]

$$/\psi o \mu^+\mu^-$$
 and $\Lambda o p\pi^-$ [arXiV:1901.07073 (2019)]

SU(3) flavour symmetry:
$$\frac{1}{\Gamma_{\Lambda_b^0 \to J/\psi\Lambda}} = 3/2$$

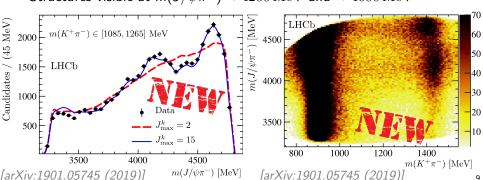
$$\frac{N_{\Xi_b^- \to J/\psi \Xi^-}}{N_{\Lambda_b^0 \to J/\psi \Lambda}} \frac{\epsilon_{\Lambda_b^0}}{\epsilon_{\Xi_b^-}} = R \equiv \frac{f_{\Xi_b^-}}{f_{\Lambda_b^0}} \frac{\mathcal{B}_{\Xi_b^- \to J/\psi \Xi^-}}{\mathcal{B}_{\Lambda_b^0 \to J/\psi \Lambda}} = \frac{f_{\Xi_b^-}}{f_{\Lambda_b^0}} \frac{\Gamma_{\Xi_b^- \to J/\psi \Xi^-}}{\Gamma_{\Lambda_b \to J/\psi \Lambda}} \frac{\tau_{\Xi_b^-}}{\tau_{\Lambda_b^0}} = \frac{f_{\Xi_b^-}}{f_{\Lambda_b^0}} \frac{3}{2} \frac{\tau_{\Xi_b^-}}{\tau_{\Lambda_b^0}}$$

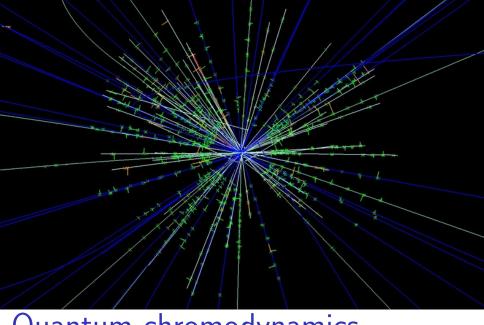

- \sim \sqrt{s} =7,8 TeV and 13 TeV samples analysed separately with requirements on decay kinematics and decay products
- ► Samples split based on $\pi_{(\Xi^{-})}^{-}$ decay point into *long* and *downstream*
- ► Simultaneous fit of all samples performed to measure m_{Ξ_h}

baryon

 $m_{=-} = 5796.70 \pm 0.39_{stat} \pm 0.15_{sys} \pm 0.15_{m_{\Lambda L}} \text{ MeV}$

- + Data
- **Most** precise $m_{\Xi_b^-}$ determination Background subtracted for measurement of fragmentation fraction ratio and for the first measurement of Ξ_b^- production asymmetry: 60 - √s=13 TeV -Full PDF $\cdots \Xi_b \to J/\psi \Xi^-$ 40

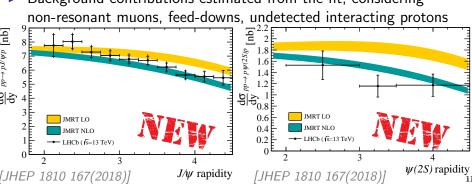

 $\frac{l_{\Xi_{b}^{-}}}{f_{\Lambda_{0}}}(\sqrt{s} = 7, 8 \,\text{TeV}) = (6.7 \pm 0.5_{\text{stat}} \pm 0.5_{\text{sys}} \pm 2.0_{\text{SU(3)}}) \times 10^{-2}$ $\frac{\Xi_b^-}{f_{\Lambda_0}} (\sqrt{s} = 13 \,\text{TeV}) = (8.2 \pm 0.7_{\text{stat}} \pm 0.6_{\text{sys}} \pm 2.4_{\text{SU(3)}}) \times 10^{-2}$



Exotics in $B^0 \to J/\psi K^+\pi^-$ Belle: New exotic Z(4200)-, BaBar: No need for exotic contributions

LHCb: Model independent 4-dimensional angular analysis in bins of $m(K^+\pi^-)$, hypothesis of non-exotic K_J^* spectrum description tested \blacktriangleright 3 fb⁻¹ dataset, requirements on kinematics and products, bkg. subtraction

- ► For $m(K^+\pi^-) \in (1085, 1445) \,\mathrm{MeV}$: higher spin states suppressed
- Non- K_1^* contributions observed at 10σ significance.
- Structures visible at $m(J/\psi\pi^-)\approx 4200\,\mathrm{MeV}$ and $\approx 4600\,\mathrm{MeV}$

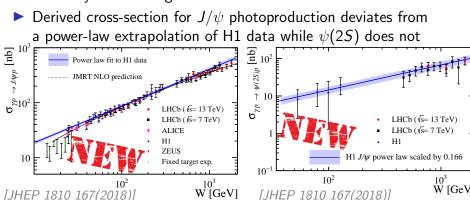


Quantum chromodynamics

Central exclusive production of J/ψ and $\psi(2S)^{\mathit{Test of perturbative QCD}}$

LHCb: Exclusive charmonium: $pp (\sqrt{s}=13 \text{ TeV})$ interaction devoid of any activity, charmonium reconstructed from $\mu^+\mu^-$

- Selection based on kinematics, reconstructed mass and vetoes from VELO and HERSCHEL
- Background contributions estimated from the fit, considering



Central exclusive production of J/ψ and $\psi(2S)$

Pomero

LHCb: Exclusive charmonium: $pp (\sqrt{s}=13 \text{ TeV})$ interaction devoid of any activity, charmonium reconstructed from $\mu^+\mu^-$

- ▶ Measured cross-sections for the J/ψ and $\psi(2S)$ mesons compared to theory in better agreement with JMRT NLO rather than LO
- \blacktriangleright Derived cross-section for J/ψ photoproduction deviates from

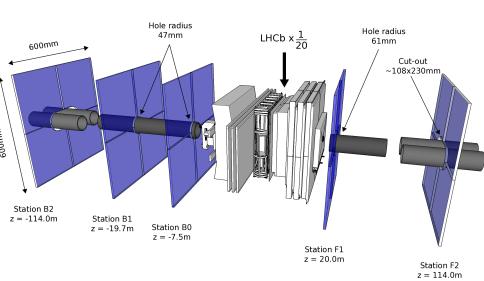
Summary

- ► LHCb measured the lifetime of doubly charmed baryon Ξ_{cc}^{++} in channel $\Xi_{cc}^{++} \to \Lambda_c^+ K^- \pi^+ \pi^+$
- ▶ Ξ_{cc}^{++} observed first time in channel $\Xi_{cc}^{++} \to \Xi_c^+ \pi^+$, measured mass is consistent with values previously reported.
- ▶ LHCb reported the most precise mass determination of $m_{\equiv_b^-}$ baryon and ratio of fragmentation fractions $\frac{f_{\equiv_b^-}}{f_{\Lambda_h^0}}$
- ▶ LHCb observed exotic contributions in $B^0 o J/\psi K^+\pi^-$ decays
- LHCb reported measurements of central exclusive production of J/ψ and $\psi(2S)$, derived cross-section for J/ψ photoproduction deviates from a power-law extrapolation of H1 data

Results beyond:

- ▶ Observation of $B^0_{(s)} \to J/\psi p\bar{p}$ decays and precision measurements of the $B^0_{(s)}$ masses [comming soon...]
- Observation of two resonances in the $\Lambda_b^0\pi^\pm$ systems and precise measurement of σ_b^\pm and $\sigma_b^{*\pm}$ properties [PRL 122(2019)012001]
- ► Evidence for an $\eta_c(1S)\pi^-$ resonance in $B^0 \to \eta_c(1S)K^+\pi^-$ decays [EPJ C78 (2018)1019]
- Search for beautiful tetraquarks in the $\Upsilon(1S)\mu^+\mu^-$ invariant-mass spectrum [JHEP 10 (2018)086]

Thank you for your attention!



Backup

HERSCHEL

► The HERSCHEL detector: high-rapidity shower counters for LHCb

