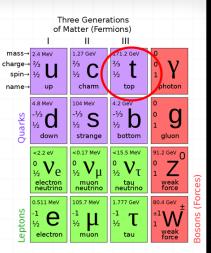
Highlights of top cross section measurements in ATLAS Marino Romano

(INFN – Bologna) On behalf of the ATLAS Collaboration

LLWI2019

Lake Louise, Canada

10-16 February 2019


Introduction

O Top quark basics:

- Mass: 173.0 ± 0.4 GeV (Particle Data Group, PRD 98, 030001 (2018))
- Decays: charged current weak decays in $t \rightarrow Wb$

• Why study top quark physics?

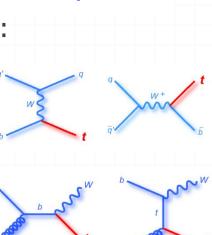
- ✓ Life-time shorter than hadronization time \rightarrow Unique possibility to study a 'bare' quark
- Precise tests of the Standard Model and verification of pQCD
- Important background for rare and interesting SM process like 4t and ttH
- Privileged window to search for new physics
- Large number of results produced by the ATLAS experiment, today will focus on a selection of latest measurements:
 - Differential top pair cross in association with jets and in association with heavy flavor
 - ATLAS + CMS combination of single top cross section and $|f_{LV}V_{tb}|$ measurements

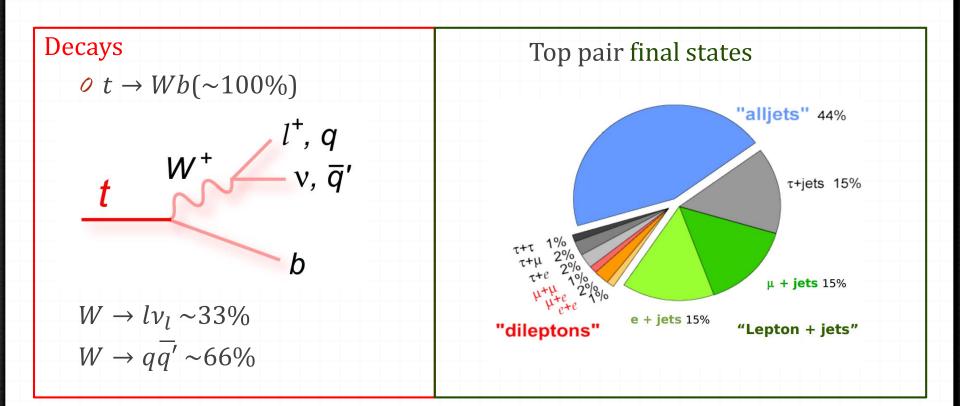
Top production and decay

00000

00000

O Top pair production at the LHC governed by strong interaction


- Gluon-gluon fusion (~90%)
- Quark-antiquark annihilation


Exchange of a virtual W boson in the s and t channels

0 t channel production dominates at LHC

Production in association of a real
 W boson

Top production and decay

Dilepton: cleanest signature, but lower statistics **Alljets (or all hadronic)**: higher statistics but large uncertainty due to multijet background. Allows full $t\bar{t}$ kinematic reconstruction **Lepton+jets (or single lepton)**: compromise between statistics and background contamination

> Highlights of top cross section measurements in ATLAS

Top quark pair inclusive cross section at 13 TeV: summary

$\begin{array}{c} \textbf{ATLAS+CMS Preliminary} \\ \texttt{LHC}\textit{top} \ \texttt{WG} & \sigma_{t\overline{t}} \ \texttt{Sum} \end{array}$	ummary, √s = 13 TeV Sept 2018	
$\begin{array}{c} \qquad \qquad$	total stat $\sigma_{t\bar{t}} \pm (stat) \pm (syst) \pm (lumi)$	
ATLAS, dilepton eμ PLB 761 (2016) 136, L _{int} = 3.2 fb ⁻¹	$818 \pm 8 \pm 27 \pm 19 \text{ pb}$	
ATLAS, dilepton ee/µµ * ATLAS-CONF-2015-049, L _{int} = 85 pb ⁻¹	749 ± 57 ± 79 ± 74 pb	
ATLAS, I+jets * ATLAS-CONF-2015-049, L _{int} = 85 pb ⁻¹	817 ± 13 ± 103 ± 88 pb	
CMS, dilepton eµ PRL 116 (2016) 052002, L _{int} = 43 pb ⁻¹ , 50 ns	$746\pm58\pm53\pm36~\text{pb}$	
CMS, dilepton eµ EPJC 77 (2017) 172, L _{int} = 2.2 fb ⁻¹ , 25 ns	$815 \pm 9 \pm 38 \pm 19 \ pb$	
CMS, dilepton eμ * CMS-PAS TOP-17-001, L _{int} = 35.9 fb ⁻¹ , 25 ns	$803 \pm 2 \pm 25 \pm 20 \text{ pb}$	
CMS, I+jets JHEP 09 (2017) 051, L _{int} = 2.2 fb ⁻¹	♦ 888 ± 2 ⁺²⁶ ₋₂₈ ± 20 pb	
CMS, all-jets * CMS-PAS TOP-16-013, L _{int} = 2.53 fb ⁻¹	834 ± 25 ± 118 ± 23 pb NNPDF3.0 JHEP 04 (2015) 040	
* Preliminary	MMHT14 EPJC 75 (2015) 5 CT14 PRD 93 (2016) 033006	
	ABM12 PRD 89 (2015) 054028 $\left[\alpha_{s}(m_{z}) = 0.113\right]$	
200 400 600 800	1000 1200 1400	
σ _{tī} [pb]		

Wide range of measurements by ATLAS and CMS in different decay channels

Good agreeement of all measurements with SM predictions

Experimental uncertainties already comparable with theoretical ones

Measurements in $e\mu$ and lepton+jets channels are outstanding

Overall comparable precision between the two experiments

Common limitation: uncertainty on integrated luminosity (2.3% for both experiments)

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CombinedSummaryPlots/TOP/ Highlights of top cross section measurements in

LLWI-2019

ATLAS

Differential cross section measurements

Total $\sigma_{t\bar{t}}$ measurements show very good agreement with the SM, but:

• New physics phenomena can still affect the shape of $\frac{d\sigma_{t\bar{t}}}{dx}$

Top production can still be not well modelled in *corners* of the phase space
 Phase space definitions:

Particle-level: extrapolate measurement in a fiducial region

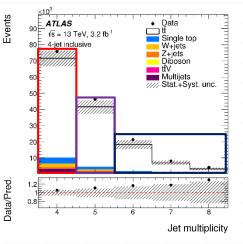
- Observables based on "stable" particles ($\tau > 0.3 \cdot 10^{-10}$ s)
- Less affected by modeling/extrapolation uncertainties
- Used for MC comparison/tuning (RIVET)

 Parton-level: extrapolate measurement to full top pair production phase space

Observables defined using the top quarks after the final state radiation

O Can be compared with theoretical higher order calculations

LLWI-2019

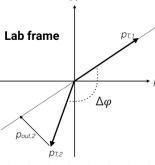

Highlights of top cross section measurements in ATI AS

$t\bar{t}$ +jets differential cross section JHEP 10 (2018) 159

 $\sqrt{s} = 13$ TeV, L = 3.2 fb⁻¹

Lepton+jets

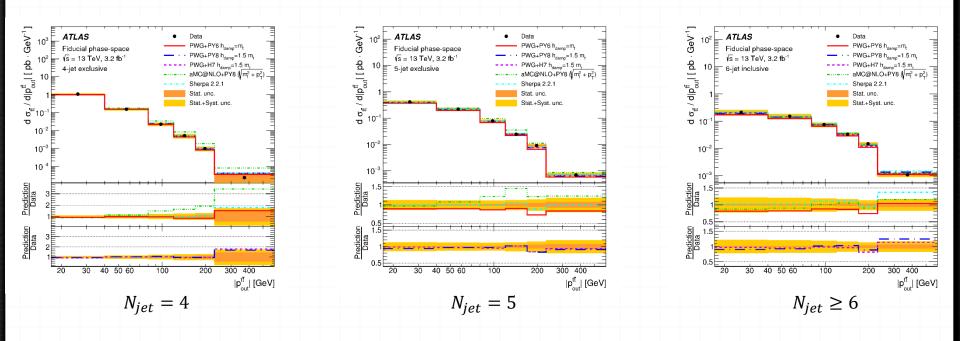
- O The effect of gluon radiation on the tt kinematics is checked by measuring differential cross-sections for a given number of jets in the event (4, 5 and ≥ 6)
 - Extension of the differential cross section measurement with any number of jets (Eur. Phys. J. C 78 (2018) 487)



Analysis strategy:

- Events selected in the lepton(e/μ) channel
- *t*t
 t kinematic variables corrected for the limited detector resolution via unfolding methods and extrapolated
 to the *fiducial* phase space
- Measured the absolute and normalized differential cross section as a function of $t\bar{t}$ kinematic variables
 - $p_T^{t\bar{t}}, p_T^{t,had}$:transverse momentum of the top quark pair system and the hadronically decaying top

$$|p_{out}^{t\bar{t}}| = \left| \vec{p}_T^{t,had} \cdot \frac{\vec{p}_T^{t,lep} \times \hat{z}}{\left| \vec{p}_T^{t,lep} \times \hat{z} \right|} \right| : \text{out-of-plane transverse momentum, sensitive to radiation and used in MC tuning}$$

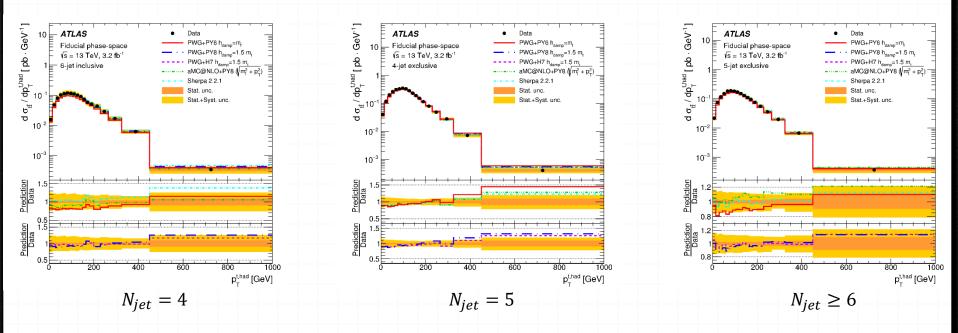

Highlights of top cross section measurements in ATLAS

LLWI-2019

$t\bar{t}$ +jets differential cross section JHEP 10 (2018) 159 $\sqrt{s} = 13$ TeV, L = 3.2 fb⁻¹ Lepton+jets

 Measurement limited by systematic uncertainties: signal modelling, jet energy scale and resolution and btagging efficiency

 $\frac{d\sigma}{d|p_{out}^{t\bar{t}}|}$: Significant mismodelling by aMC@NLO+Pythia8 in the 4- and 5- jet multiplicity regions

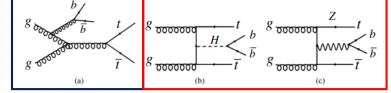

Highlights of top cross section measurements in

LLWI-2019

ATLAS

$t\bar{t}$ +jets differential cross section JHEP 10 (2018) 159 $\sqrt{s} = 13$ TeV, L = 3.2 fb⁻¹ Lepton+jets

 Measurement limited by systematic uncertainties: signal modelling, jet energy scale and resolution and btagging efficiency

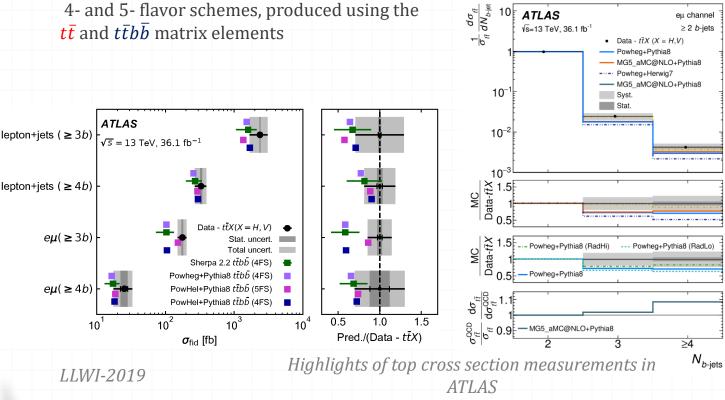


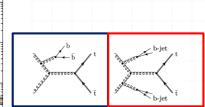
 $d\sigma/dp_T^{t_{had}}$: Mismodelling enhanced in the intermediate jet multiplicity region Highlights of top cross section measurements in ATLAS

LLWI-2019

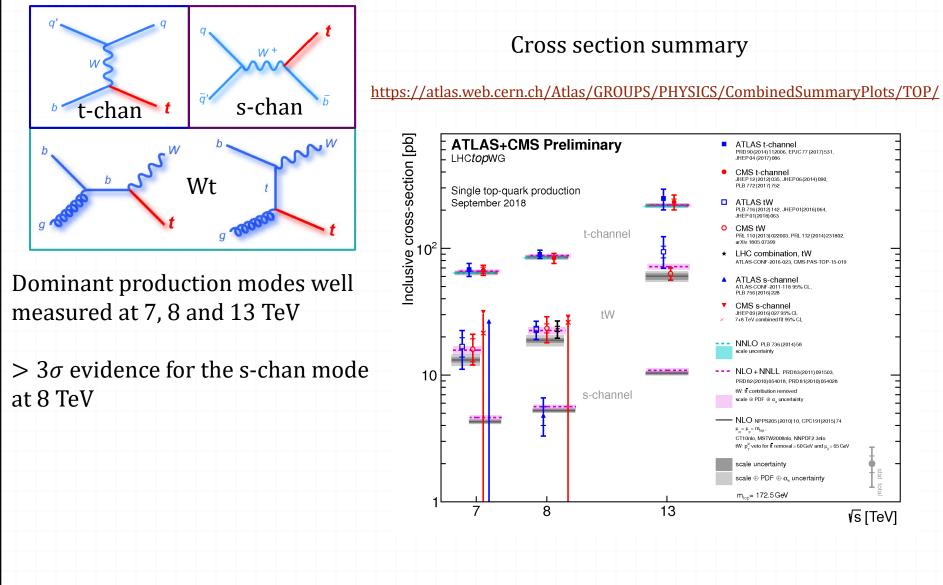
9

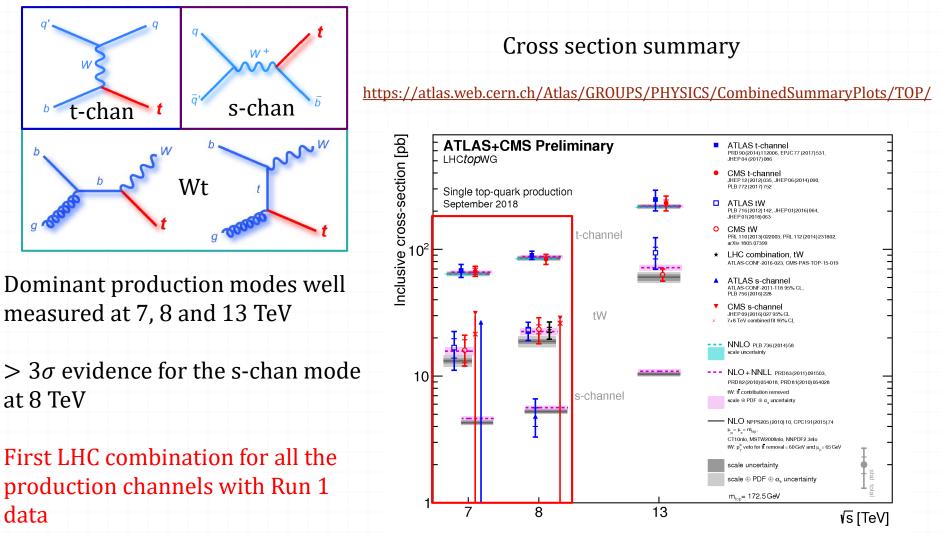
$t\bar{t}$ +HF differential cross section


arXiv:1811.12113 [hep-ex] $\sqrt{s} = 13$ TeV, L = 36.1 fb⁻¹


Lepton+jets and dilepton (eµ)

- Ø Motivations:
 - Predictions for the $t\bar{t}$ +HF process affected by higher uncertainties due to the non-negligible m_b
 - Important background for $t\bar{t}H(H \rightarrow b\bar{b})$ production
- Inclusive cross-sections of the production of top pairs with three and four b-jets as well as normalized differential cross-sections as a function of global event and of b-jet properties
 - Differential cross-sections presented for events with at least three b-jets in the eµ channel and with at least four b-jets in the lepton + jets channel
 - As a function of H_T , H_T^{had} , p_T of each b-jet, b-jet multiplicity, ΔR_{bb} , m_{bb} and $p_{T,bb}$
 - No attempt to identify the origin of the *b*-jets
 - $t\bar{t}H$ and $t\bar{t}Z$ contributions included in the signal definition


- Final particle level measurement extracted to the fiducial phase space
 - *•* $t\bar{t}H$ and $t\bar{t}Z$ predictions subtracted from the final measurement
 - ho Normalized measurement more precise than the *absolute* ightarrow cancellation of correlated systematics
 - Precision limited by data statistics, generator uncertainties, jet energy scale and resolution
 - Comparisons with NLO+PS predictions employing



MC predictions where additional b-jets are dominantly produced by the parton shower predict too few events

Single top quark cross section

Single top quark cross section

ATLAS + CMS combination of single top cross section and $|f_{LV}V_{tb}|$ <u>TOPQ-2017-16</u>

- Osingle top cross sections are measured separately for the different production channels
 - Only the evidence of s-channel production at 8 TeV considered
- O The left-handed vector coupling at the tWb production vertex extracted from all single top-quark cross-section

measurements: $|f_{LV}V_{tb}| = \sqrt{\frac{\sigma_{meas}}{\sigma_{th}}}$

- In the SM, the tWb coupling is given by the CKM matrix element V_{tb}
- of_{LV} contains non-SM contributions

LLWI-2019

Highlights of top cross section measurements in ATLAS

 $\sqrt{s} = 7$ and 8 TeV

ATLAS + CMS combination of single \bigvee top cross section and $|f_{LV}V_{tb}|$

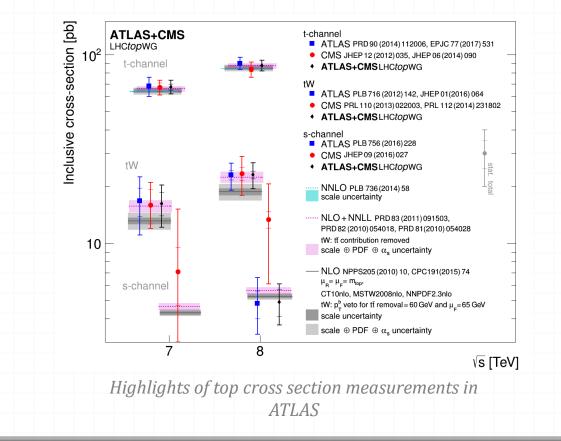
 $\frac{\text{TOPQ-2017-16}}{\sqrt{s}} = 7 \text{ and } 8 \text{ TeV}$

- Combination done with the iterative BLUE (Best Linear Unbiased Estimate) method
 - Accounting for uncertainties and correlations of the measured and theoretical cross sections
 - Iterates until convergence: central value and total uncertainty change by less than 1% compared to the previous iteration

o Correlations for σ_{meas}

- All modelling uncertainties fully correlated
- Experimental uncertainties fully uncorrelated between ATLAS and CMS and 7 and 8 TeV
- Luminosity uncertainty 30% correlated

• Correlations for σ_{th} :


- Scale uncertainties uncorrelated for different precisions (NLO vs NLO+NNLL)
- PDF taken as 50% correlated (each pair of production channel has one parton in common)
- *•* m_t and E_{beam} are fully correlated

Highlights of top cross section measurements in

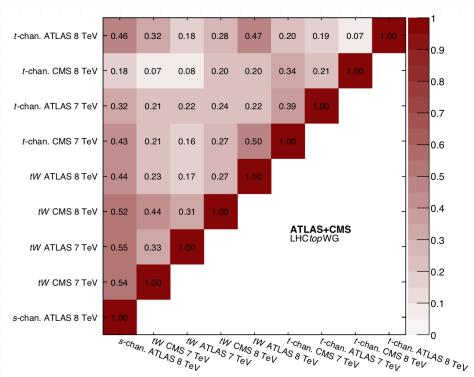
LLWI-2019

ATLAS + CMS combination of single \bigvee top cross section and $|f_{LV}V_{tb}|$

Single top-quark cross-section measurements performed by ATLAS and CMS, and combined result compared with the NLO (*t* and *s*-channel), NLO+NNLL (*tW*) and NNLO (*t*-chan) predictions

LLWI-2019

16


TOPQ-2017-16

 $\sqrt{s} = 7$ and 8 TeV

ATLAS + CMS combination of single \downarrow top cross section and $|f_{LV}V_{tb}|$ \downarrow TOPQ-2017-16 $\sqrt{s} = 7$ and 8 TeV

• Combination performed also for $|f_{LV}V_{tb}|^2$ (linear with the cross section)

- All production modes are combined besides the CMS s-channel measurement
- O Uncertainties on σ_{meas} and σ_{th} are propagated to $|f_{LV}V_{tb}|^2$

17

LLWI-2019

Highlights of top cross section measurements in ATLAS

ATLAS + CMS combination of single \bigvee top cross section and $|f_{LV}V_{tb}|$

$\sqrt{s} = 7$ and 8 TeV O Summary plot for the ATLAS+CMS LHCtopWG $|f_{LV}V_{tb}|$ combinations from the $|f_{LV}V_{tb}| = \sqrt{\frac{\sigma_{meas.}}{\sigma_{theo.}}}$ from single-top-quark production Run I cross-section σ_{theo} : NLO (t- and s-channel), NLO+NNLL (tW) total theo. measurements: $\delta \sigma_{theo}$: scale \oplus PDF $\oplus \alpha_s \oplus m_t \oplus E_{beam}$ m_t = 172.5 GeV • As expected, *t*-channel $|f_{1v}V_{tb}| \pm (meas.) \pm (theo.)|$ provides the largest ATLAS+CMS LHCtopWG $1.02\ \pm\ 0.04\ \pm\ 0.02$ t-channel, $\sqrt{s} = 7, 8 \text{ TeV}$ contribution. O Total uncertainty: 4.3% ATLAS+CMS LHCtopWG $1.02 \pm 0.09 \pm 0.04$ *tW*, $\sqrt{s} = 7, 8 \, \text{TeV}$ 0 30% improvement wrt the Tevatron combination PRL 115, 152003 (2015) ATLAS+CMS LHCtopWG $0.97 \pm 0.15 \pm 0.02$ s-channel, vs = 8 TeV ATLAS+CMS LHCtopWG $1.02 \pm 0.04 \pm 0.02$ *t*-channel, tW, *s*-channel, $\sqrt{s} = 7.8 \text{ TeV}$ 0.6 0.8 1.2 1.4 |f_{iv}V_{th}|

LLWI-2019

Highlights of top cross section measurements in ATLAS

TOPQ-2017-16

Summary

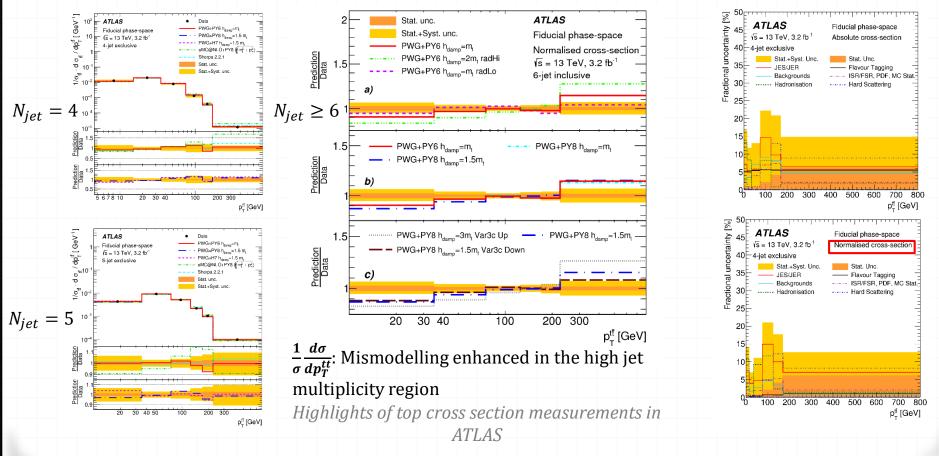
- O Top quark measurements have provided stringent tests of SM
- Top quark pair production
 - Total cross section measured in many channels, uncertainties already competitive with the theoretical predictions
 - Differential cross-sections for $t\bar{t}$ production in association of light⁽¹⁾ and heavy flavor⁽²⁾ jets measured for several observables, reconstructed in different channels
 - Overall good modeling of tt production provided by NLO generators
 - Signal modeling among the largest sources of systematic uncertainties
- LHC Run-I combination of single top-quark cross-sections and $|f_{LV}V_{tb}|^2$ measurements⁽³⁾
 - Combination of the cross-section per production mode.
 - Combination of $|f_{LV}V_{tb}|^2$ from **all** production modes
- ${\it o}~$ Stay tuned for measurements with full Run II dataset , expect $36 fb^{-1} \rightarrow {\sim} 140 fb^{-1}$
 - Opens up access to rarer and rarer processes
 - Potential to extend differential measurements to more dimensions, additional final states
 - Improved signal modelling thanks to early Run II results will reduce the uncertainties
 - (1) JHEP 10 (2018) 159
 - (2) arXiv:1811.12113 [hep-ex]
 - (3) https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/TOPQ-2017-16/

LLWI-2019

Highlights of top cross section measurements in

ATLAS

Backup

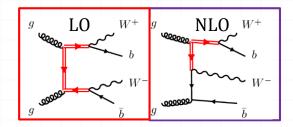

LLWI-2019

Highlights of top cross section measurements in ATLAS

20

$t\bar{t}$ +jets differential cross section JHEP 10 (2018) 159 $\sqrt{s} = 13$ TeV, L = 3.2 fb⁻¹ Lepton+jets

- Measurement limited by systematic uncertainties: signal modelling, jet energy scale and resolution and btagging efficiency
 - O Strong reduction in the uncertainty on b-tagging when measuring normalized differential cross section



Interference between tW and $t\bar{t}$ PRL 121 (2018) 152002 $\sqrt{s} = 13$ TeV, L = 36.1 fb⁻¹

Dilepton

• tW diagrams beyond the leading order interfere with $t\bar{t}$

- Size of the interference dependent on the phase space
- O Can be important for searches

O Both process are factorized in standard calculations (narrow width approx.) $|A_{tW}|^2 = |A_{tWb}|^2 + |A_{t\bar{t}}|^2 + 2Re\{A_{tWb}^*A_{t\bar{t}}\}$

Different methods to handle the interference at NLO

- Diagram removal (DR) removes all the $t\bar{t}$ diagram contributions: $|A_{tW}|_{DR}^2 = |A_{tWb}|^2$
- Diagram removal 2 (DR2) removes the LO $t\bar{t}$ term but keep the interference:

 $|A_{tW}|^{2}_{DR2} = |A_{tWb}|^{2} + 2Re\{A^{*}_{tWb}A_{t\bar{t}}\}$

- Diagram subtraction (DS) cancels the resonant t t contribution with a local subtraction term:
 $|A_{tW}|_{DS}^2 = |A_{tWb} + A_{t\bar{t}}|^2 C_{2t}$
- WbWb(lvblvb) implemented in PowHeg (no narrow width approx.): interference automatically handled
 DR: JHEP07(2008)02

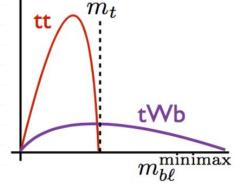
DR: JHEP07(2008)029 DR2: EPJC77(2017)34 DS: JHEP07(2008)029 WbWb: EPJC76(2016)691

LLWI-2019

Highlights of top cross section measurements in ATLAS

22

Interference between tW and $t\overline{t}$ PRL 121 (2018) 152002 $\sqrt{s} = 13$ TeV, L = 36.1 fb⁻¹


Dilepton

Interference investigated using differential cross section as a function of a variabile sensitive to its effects (m_{bW})

• For $t\bar{t}$ production $m_{bW} \sim m_t$ (two bW pairs from top)

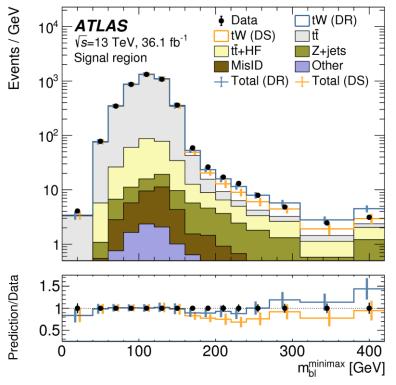
• For tWb there is only one bW pair from top

OWWbb (dilepton) taken as signal
 O Lepton taken as a proxy for the W: m_{bW} → m_{bl}

O Lepton-b pairing ambiguity solved with the minimax procedure: $m_{bl}^{minimax} = \min\{\max(m_{b_1l_1}, m_{b_2l_2}), \max(m_{b_1l_2}, m_{b_2l_1})\}$

- ${\it o}$ Double resonant $t\bar{t}$ populates the $m_{bl}^{minimax} < m_t$ region
- Single resonant *Wtb* populates the whole range
- o Interference effects significant at high $m_{bl}^{minimax}$

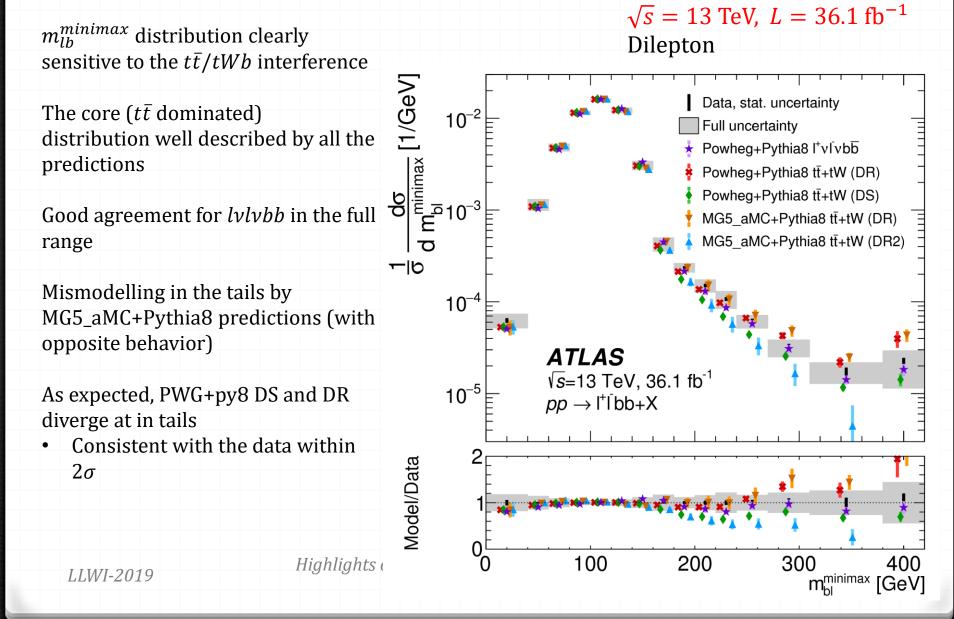
LLWI-2019

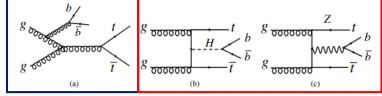

Highlights of top cross section measurements in ATLAS

Interference between tW and $t\overline{t}$ PRL 121 (2018) 152002 $\sqrt{s} = 13$ TeV, L = 36.1 fb⁻¹

Dilepton

 Normalized differential cross section measured in the fiducial phase space from the reconstructed discriminant distribution

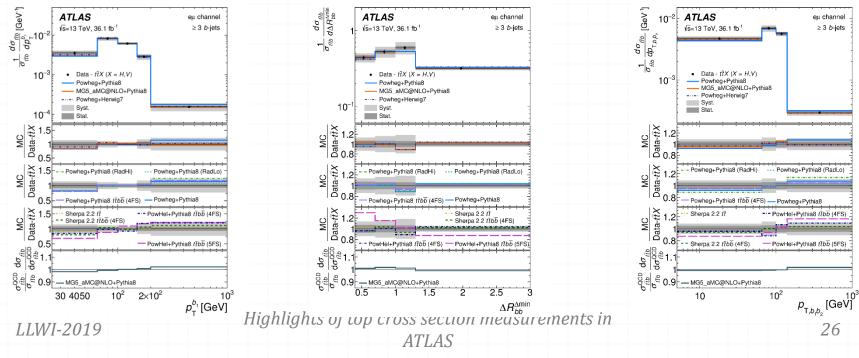

- O Showing the different interference schemes
- Tails enriched of Wt events
- Measurement limited by the modelling uncertainties
 - $t\bar{t} + tWb$: total cross section and MC parameters
 - $t\bar{t}$ + HF: PowhegPythia6 and Sherpa predictions
 - Main detector uncertainties: JES and b-tagging


LLWI-2019

Highlights of top cross section measurements in ATLAS

Interference between tW and $t\overline{t}_{PRL 121 (2018) 152002}$

tt<u>+HF differential</u> cross section

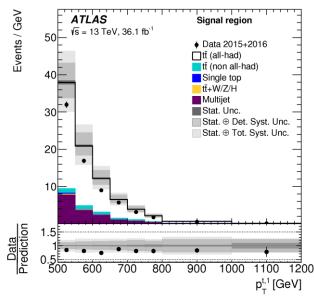


arXiv:1811.12113 [hep-ex] $\sqrt{s} = 13$ TeV, L = 36.1 fb⁻¹

Lepton+jets and dilepton

Final *particle* level measurement extracted via unfolding procedure and extrapolated to the *fiducial* phase space

- *•* $t\bar{t}H$ and $t\bar{t}Z$ predictions subtracted from the final measurement
- o Normalized measurement more precise than the *absolute* \rightarrow cancellation of correlated systematics
- Precision limited by data statistics, generator uncertainties, jet energy scale and resolution
- Comparisons with NLO+PS predictions employing 4- and 5- flavor schemes, produced using the $t\bar{t}$ and $t\bar{t}b\bar{b}$ matrix elements

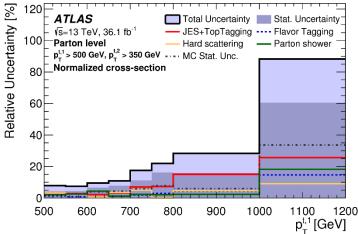

$t\bar{t}$ differential cross section in the boosted topology $\sqrt{s} = 13$ TeV, L = 36.1 fb⁻¹ All hadronic

ho Full $t\bar{t}$ kinematic reconstruction possible only in the all hadronic final state

- Usually high uncertainties due to contamination from the multijet background
- ✓ Final state with many (≥ 6) jets → High combinatorial background

Ø Boosted topology can alleviate these issues

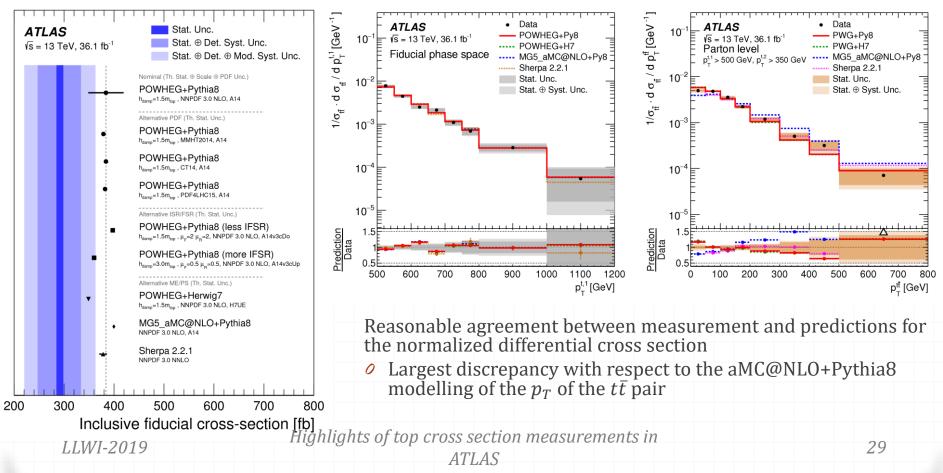
- Multijet background is reduced in the high pt regimes
- ✓ Top candidates defined as single large-*R* jets
 → no combinatorial ambiguity
- Allow measurements at kinematic frontier: very high top pT


$t\bar{t}$ (all-hadronic)	3250 ± 470
$t\bar{t}$ (non-all-hadronic)	200 ± 40
Single-top-quark	24 ± 12
$t\bar{t}+W/Z/H$	33 ± 10
Multijet events	810 ± 50
Prediction	4320 ± 530
Data $(36.1 {\rm fb}^{-1})$	3541

LLWI-2019

Highlights of top cross section measurement ATLAS

$t\bar{t}$ differential cross section in the boosted topology $\sqrt{s} = 13$ TeV, L = 36.1 fb⁻¹ All hadronic


- Differential cross section at *parton* and *particle* level as a function of the leading and subleading top kinematics and event variables
- O Top candidate:
 - Large-*R* (R = 1) jet with $p_T > 500/350$ GeV
 - Top tagging with jet substructure variables: m_{jet} and N-subjettiness ratio τ_{32}
 - Same definition applied at particle level (using stable particles)
- Ø Backgrounds:
 - QCD multijets: (dominant) estimated from data (ABCD method)
 - non-allhadronic $t\bar{t}$, single top, $t\bar{t} + H/V$: from simulation
- Measurement limited by the statistical, large-R jet energy scale/top tagging and the signal modelling uncertainties

$t\bar{t}$ differential cross section in the boosted topology PRD 98 (2018) 012003 $\sqrt{s} = 13$ TeV, L = 36.1 fb⁻¹ All hadronic

Predicted total fiducial cross section overestimates the measurement

O Large uncertainties, not statistically significant

Summary

- (1) JHEP 10 (2018) 159
- (2) arXiv:1811.12113 [hep-ex]
- (3) ATLAS-PUB-XXX
- (4) PRL 121 (2018) 152002

- O Top quark measurements have provided stringent tests of SM
- Top quark pair production
 - Total cross section measured in many channels, uncertainties already competitive with the theoretical predictions
 - Differential cross-sections for tt
 t
 in association of light⁽¹⁾ and heavy flavor⁽²⁾ jets measured for several observables, reconstructed in different channels
 - Overall good modeling of tt production provided by NLO generators
 - Signal modeling among the largest sources of systematic uncertainties
- LHC Run-I combination of single top-quark cross-sections and $|f_{LV}V_{tb}|^2$ measurements⁽³⁾
 - Combination of the cross-section per production mode.
 - Combination of $|f_{LV}V_{tb}|^2$ from **all** production modes
- If (3) not approved: First investigation of the $t\bar{t} + Wtb$ interference⁽⁴⁾
 - *lvlvbb* shows the best agreement in the whole discriminant range
 - DR/DS behave very differently in the sensitive range, but within 2sigma from the data
- *•* No top quark measurements with full Run II dataset public yet, expect $36fb^{-1} \rightarrow ~140fb^{-1}$
 - Opens up access to rarer and rarer processes
 - Potential to extend differential measurements to more dimensions, additional final states
 - Improved signal modelling thanks to early Run II results will reduce the uncertainties

Highlights of top cross section measurements in ATLAS