

SEARCH FOR BSM PHYSICS USING CHALLENGING SIGNATURES WITH THE ATLAS DETECTOR

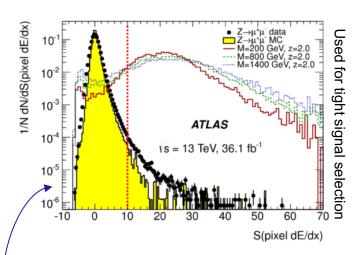
Margaret Lutz, University of Massachusetts Amherst on behalf of

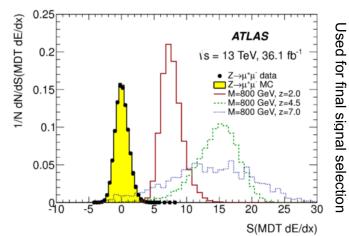
The ATLAS Collaboration

Lake Louise Winter Institute
14 February 2019

BSM at ATLAS

- BSM physics may produce final states which are difficult to trigger on or reconstruct, or may have complicated backgrounds
- Particles may leave atypical types of tracks in the detector, or decays anywhere in the detector, including in the calorimeters or the muon spectrometer
- Will discuss four recent searches performed by the ATLAS collaboration
- Multi-charged particles https://arxiv.org/abs/1812.03673
 - Make use of dE/dx measurements in multiple subdetectors
- Displaced jets in the HCal https://arxiv.org/abs/1902.03094
 - Use jets with ratio of calorimeter energy deposits distinct from SM jets
- Displaced jets in the MS https://arxiv.org/abs/1811.07370
 - Displaced jets in the MS use special trigger and reconstruction

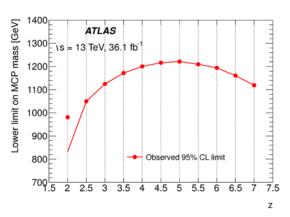


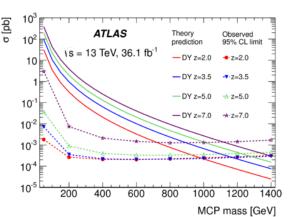

Multi-charged particles

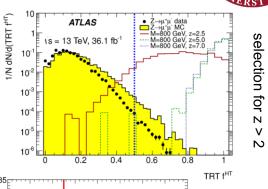
- Many theories predicting multi-charged particles (MCPs)
 - Almost-commutative leptons
 - Technibaryons
 - Doubly charged Higgs boson
- Lepton-like MCPs pair produced with a Drell-Yan production model
 - Q = ze -> (2,2.5,...7)e
- Expect MCPs to travel through entire detector, with muon-like tracks and distinct ionization signal (dE/dx) throughout ATLAS
 - dE/dx related to charge dE/dx ~z²
 - dE/dx measurable in the pixel, TRT, MDT

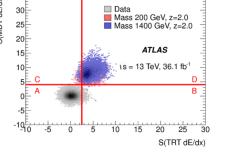
•
$$S(dE/dx) = \frac{dE/dx - \langle dE/dx \rangle_{\mu}}{\sigma(dE/dx)_{\mu}}$$

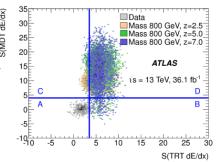
Heavy particles (presented by B. Hooberman) – also use dE/dx in the pixel to determine mass of slow, highly ionizing particles

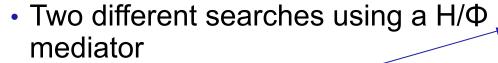


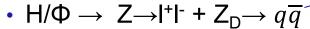




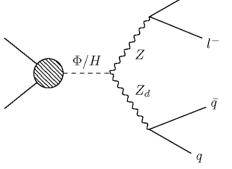

Multi-charged particles

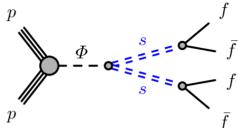

- Pixel dE/dx cannot handle z > 2, use overflow bits in the IBL and use TRT HT fraction
- Background estimation
 - S(TRT dE/dx) and S(MDT dE/dx) very useful to separate signal and background events
 - Two methods
 - Standard ABCD for z = 2
 - No background events in C develop probability for background to pass S(MDT dE/dx) to apply to events in B
 - < 1 background events predicted, 0 observed

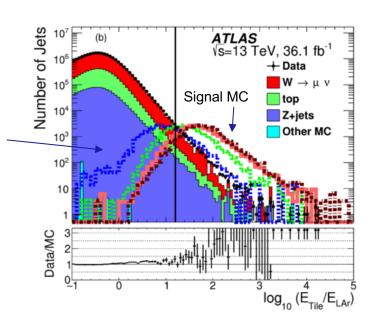



New limits on DY MCP pairs, using 36.1 fb⁻¹ of 2015-2016 data, exclude a range of masses for several z values

https://arxiv.org/abs/1812.03673

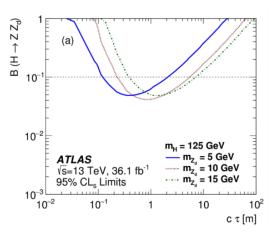

- Prompt leptons and one displaced jet
- https://arxiv.org/abs/1811.02542

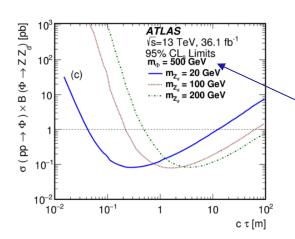

•
$$H/\Phi \rightarrow s s \rightarrow f\overline{f}f\overline{f}$$

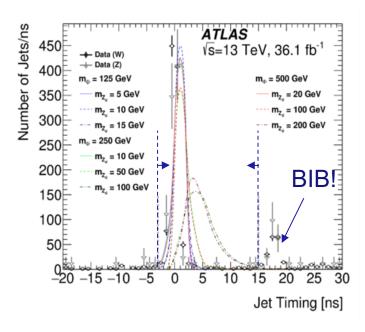

- Two displaced jets
- https://arxiv.org/abs/1902.03094 (just released!)

Properties of jets decaying in the HCal

- Very little energy left in the ECal
 - CalRatio $\frac{E_HCAL}{E_ECAL}$ greater than most SM jets
- Jets appear narrower than those from prompt decays
- Very few tracks point to ATLAS primary vertex
 - Unlike most SM process which come from PV

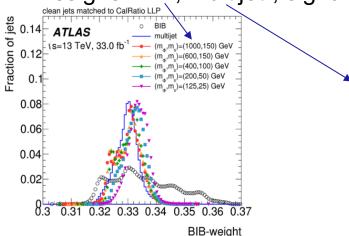


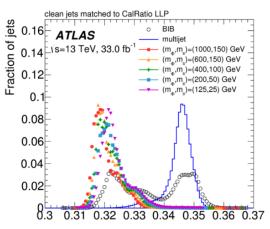


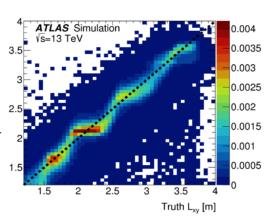


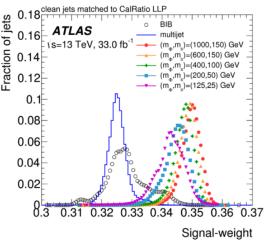
Displaced jets in the HCal – H/ $\Phi \rightarrow Z \rightarrow l^+l^- + Z_D \rightarrow q\overline{q}$

- Prompt leptons in the event
 - · Useful for trigger, event selection
- SM backgrounds (Z/W+jets, top)
 - Discriminate using cuts on tracks per jet and calRatio
- Other backgrounds (Out-of-time pileup, BIB)
 - Discriminate against using jet timing
- Background estimation
 - f_{CR}=N_{CR-jet}/N_{jet} in W->lv data

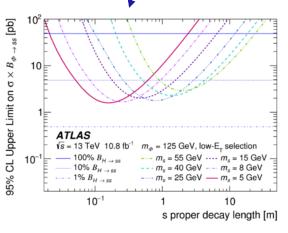

- Limits set using 36.1 fb⁻¹ of 2015+2016 data
- Expand previous search with addition of higher mass Φ

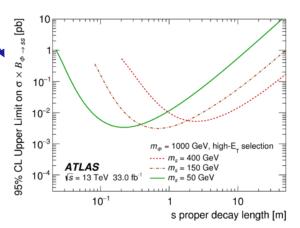


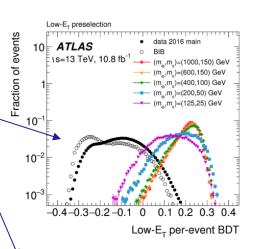

Displaced jets in the HCal – H/ $\Phi \rightarrow s s \rightarrow f\overline{f}f\overline{f}$

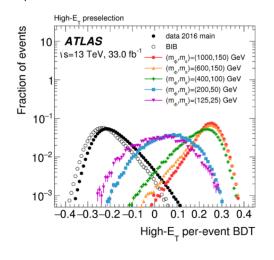

- Custom trigger
 - Relies on calRatio, trackless jet features of displaced jets
 - Two triggers for low and high E_T regions
- Multilayer perceptron (MLP)
 - TMVA trained on signal MC samples
 - Used to predict displaced jet decay position
- Per-jet BDT
 - Uses MLP, track, jet properties as input
 - · Trained on signal MC, multi-jet MC, BIB data
 - Assigns BIB-, multijet-, signal- weights to jets

Multijet-weight

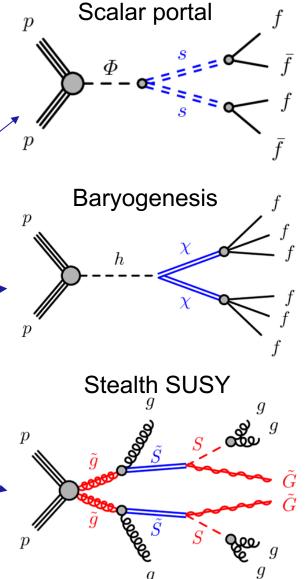



Displaced jets in the HCal – H/ $\Phi \rightarrow s s \rightarrow f\overline{f}f\overline{f}$


- Per-event BDTs
 - Use per-jet BDT, other event level variables
 - Trained on signal MC and BIB data
 - Purpose to distinguish BIB events from signal events;
 - Event cleaning including BDT output removes BIB
- Data driven ABCD method
 - Use per-event BDT and $\sum \Delta R_{min}(jet, tracks)$
- Limits set

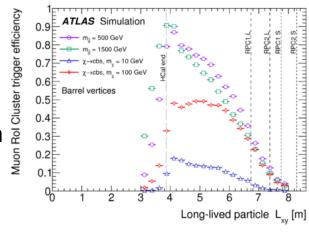

Using 10.8 fb⁻¹ of 2016 data for low E_T

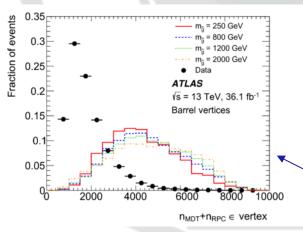
Using 33.0 fb⁻¹ of 2016 data for high E_T



Displaced MS jets

- Many signatures can result in displaced hadronic jets decaying after the last layer of the HCal
 - Scalar bosons decaying to fermion pairs
 - 2MSVx
 - 1MSVx + E_T^{miss}
 - Baryogenesis models
 - 2MSVx
 - 1MSVx + E_T^{miss}
 - Stealth SUSY models
 - 2MSVx
 - 1MSVx + Jets

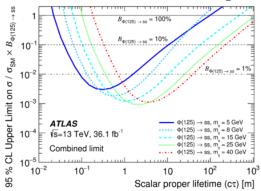


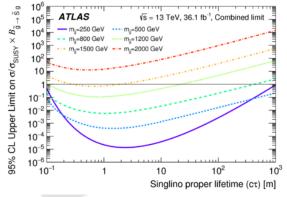

Displaced MS jets

- Hadronic vertices in the MS large numbers of low p_T, charged particles
 - Quite different from tracks of muons in the MS
- Specialized muon trigger

https://arxiv.org/abs/1305.2284

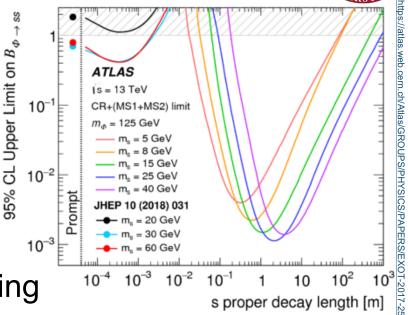
- Based on a dimuon trigger at L1
- Requires clusters of 3 (4) muon regions of interest in ΔR < 0.4 cone in the barrel (endcap)
- Trigger efficiency impacted by LLP decay position earlier decays are more spatially separated


- Specialized MSVx reconstruction https://arxiv.org/pdf/1311,7070.pdf
 - Takes advantage of MDT chamber structure to form tracklets
 - Tracklets used to reconstruct vertices
 - Slightly different algorithms for MSVxs in the barrel vs endcaps
 - Differences in B-field
 - High hit multiplicity and isolation of MSVx required to separate true displaced decays from background



Displaced MS jets

- Two different background determination methods, for 2MSVx or 1MSVx + X
 - For 2MSVx strategy background calculated using counting method with zero bias data
 - -> $N_{2Vx} = N^{1Cl} \times P^{Vx}_{noMStrig}$
 - For the 1MSVx + X, ABCD methods were used with two different planes
 - 1MSVx + jets Isolation criteria vs nMDT + (nRPC,nTGC) hits in MSVx
 - 1MSVx + E_T^{miss} Isolation criteria vs Δφ between MSVx and E_T^{miss} vector
- Limits set using 36.1 fb⁻¹ of 2015+2016 data on $\sigma \times BR$

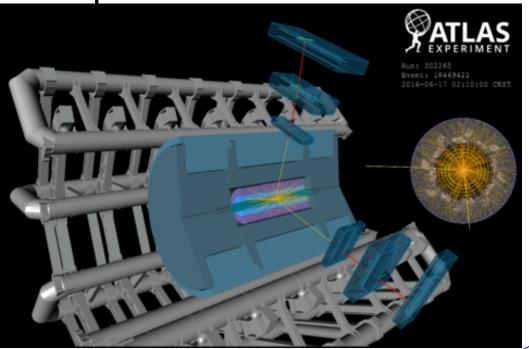


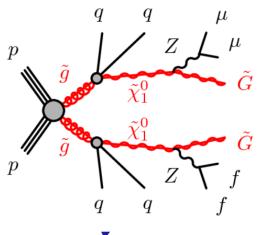
Conclusions

 Bonus – hot off the presses, new combined limits using results from displaced HCal and MS jets searches

https://journals.aps.org/prd/pdf/10.1103/PhysRevD.99.012001

- Challenging signatures take time and creativity but are necessary to cover all the available phase space
- Many more analyses in the pipeline
- Thanks for listening!

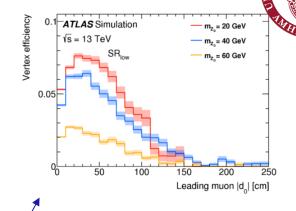

BACKUP

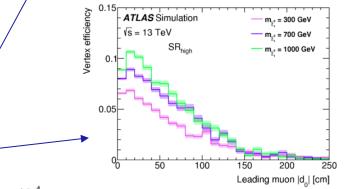


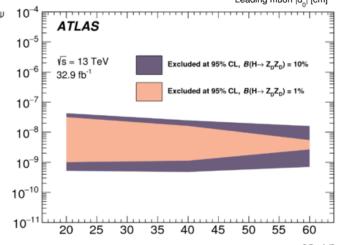
 $Z_{\rm D}$

Displaced dimuon vertices

H

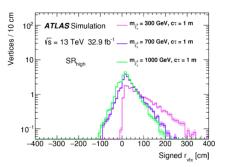

Different models can produce displaced muon pairs

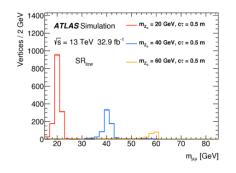

- General gauge mediated SUSY
- Dark sector gauge boson models
- μ⁺μ⁻ from a vertex at least several cm from IP
- Use MS standalone tracks
- Vertex position half way between points of closest approach (to the IP) of the two muons

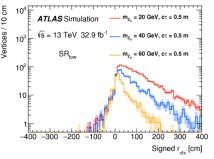


Displaced dimuon vertices

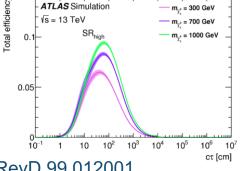
- Many backgrounds to consider including BIB, cosmic muons, fakes, and prompt muons from several SM processes
- Isolation of muon candidates required from ID tracks and jet activity
 - Impacts efficiency for signal muons at low d₀, in addition to limits at high d₀
- Limits set with 32.9 fb⁻¹ of 2016 data
 - Lifetime ranges excluded for each mass point in GGM and dark sector models
 - Values of coupling parameter ε excluded for 20 < m_{zD} < 60 GeV

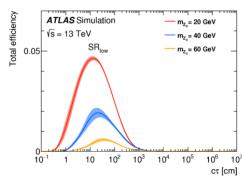



Backup for displaced dimuon vertices


- The distributions of dimuon invariant mass and r_{vtx} (the projection of the vertex position into the xy-plane)
 - For GGM

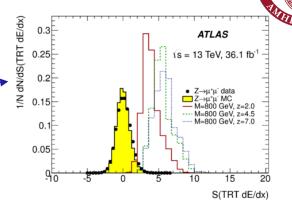
for dark-sector

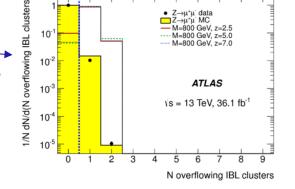




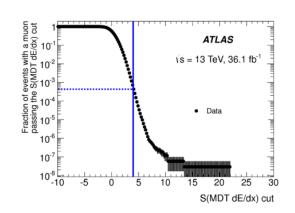
 Overall event-level efficiencies after full signal region selection for GGM and dark-sector

TY OF MASSA


Backup for displaced dimuon vertices – more limit plots



Backup for multi-charged particles


 S(TRT dE/dx) used in ABCD plane/extra background discrimination

- Number of overflow IBL clusters used for z > 2
 - Pixel saturates at ~8.5*MIP, IBL at ~1.5*MIP
 - IBL has an overflow bit, the rest of the pixel layers do not

- Factor f used for calculation of background for z > 2 for which ABCD plane has no events in 'C'
 - Set using 'anti-tight' selection, reversing either TRT HT fraction or IBL overflow cluster cut

z = 2

z > 2

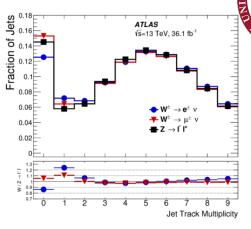
Backup for multi-charged particles

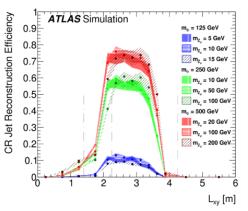
https://arxiv.org/abs/1812.03673

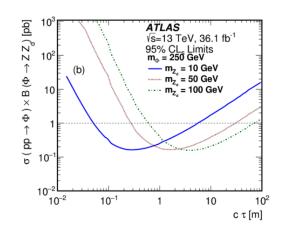
Selection and background estimation for multi-charged particles

		Candidate track preselection	Tight selection	Final Selection
Reqs	z = 2	Combined muon with:	Preselection +	Tight selection +
		"medium" identification criteria $p_T^{\mu}/z > 50 \text{ GeV}$	S(pixel dE/dx) > 10	S(TRT dE/dx) > 2.5 S(MDT dE/dx) > 4
	z > 2	η < 2.0	Preselection +	Tight selection +
		no other tracks with p_T/z > 0.5 GeV within ΔR < 0.01	≥ 1 overflowing IBL cluster, f ^{HT} > 0.5	S(TRT dE/dx) > 3.5 S(MDT dE/dx) > 4

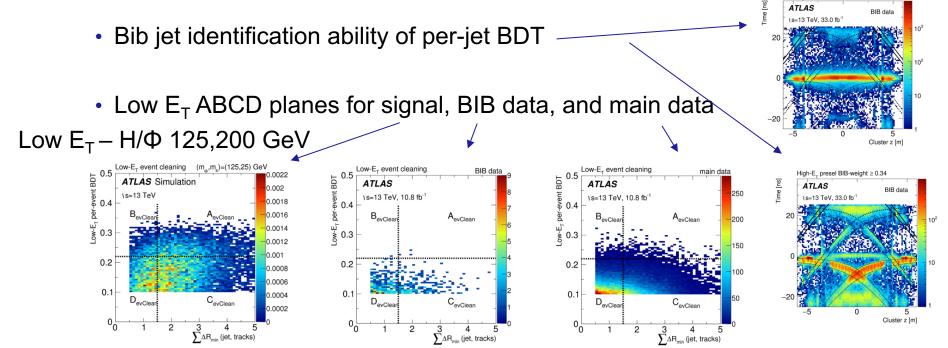
N _{data} A obs	N _{data} B obs	N _{data} C obs	$N_{data}^{D\;exp}$	N_{data}^{Dobs}
22117	379	9 0.	15 +/- 0.05 +/- 0.	10 0
N _{data} B ob	os f		N _{data} D exp	N _{data} D obs
66	4.3x10 ⁻⁹	(2.9 +/	- 0.4 +/- 2.2)x10 ⁻²	2 0

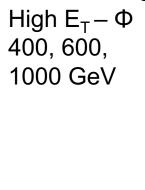


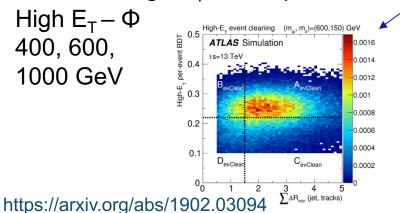

Backup for displaced jets in the HCal

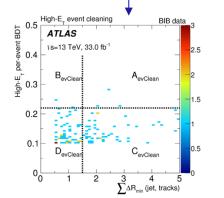

- $-H/\Phi \rightarrow Z \rightarrow II + Z_D \rightarrow qq$
- Jet track multiplicity for SM jets in data
 - Some difference between different decay modes, W->ev looks less like Z, thus it was used for systematics instead of the background estimate
- Calo jet reconstruction efficiency vs L_{xv} of the jet

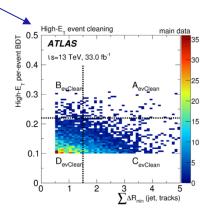
 Extra scalar mass since previous iteration in addition to 500 GeV



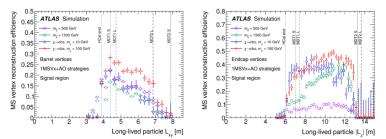


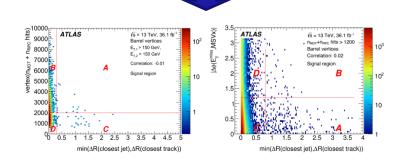


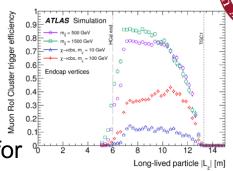

Backup for displaced jets in the HCal – H/ $\Phi \rightarrow s s \rightarrow ffff$

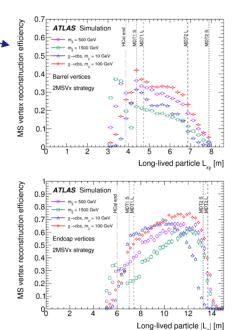


High E_T ABCD planes for signal, BIB data, and main data

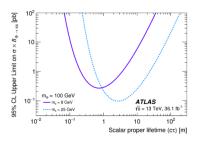


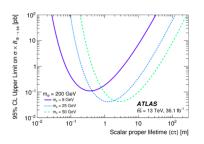


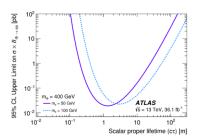

Backup for displaced MS jets

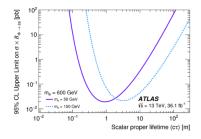

- Trigger efficiency vs MSVx L_z
- Vertex reco efficiency for barrel and endcap vertices for 2MSVx strategy
- Vertex reco efficiency for barrel and endcap vertices for 1MSVx + X

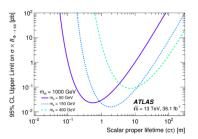
ABCD planes for 1MSVx + X

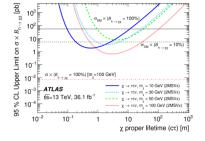


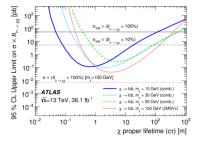


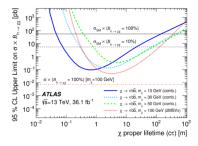





Backup for displaced MS jets – more limit plots





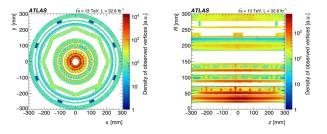


Older interesting searches – Displaced vertex + MET

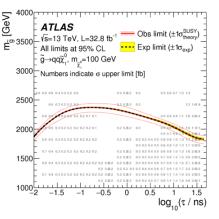
Displaced ID vertices with missing transverse momentum

Split SUSY scenarios – large squark mass -> R-hadrons

which are long lived


Vertices in the ID far from the IP

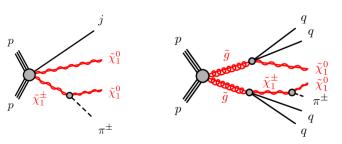
Uses specialized displaced tracking

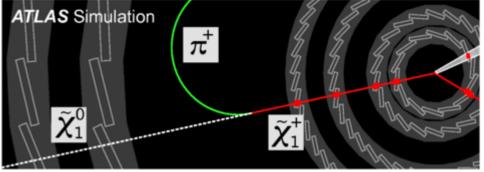

Special secondary vertexing

Main source of background – hadronic vertices from material

interactions

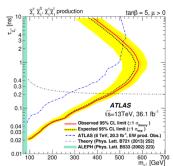
 Limits set using 32.8 fb⁻¹ of LHC data





Older interesting searches – Long lived charginos with

disappearing tracks



 Chargino may decay in such a way that the track is only briefly visible to the ATLAS detector

 Having such short tracklets creates unique challenges for reconstruction and background rejection

• Extra quality criteria must be applied to tracklets such as narrow geometrical acceptance, isolation, zero pixel holes, and no SCT hits

 Limits were set with 36.1 fb⁻¹ of 2015+ 2016 data

