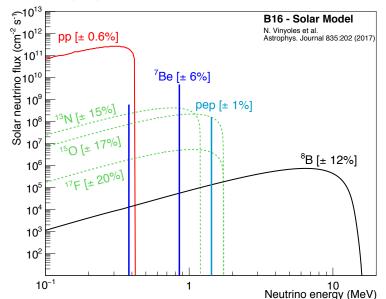


Lake Louise Winter Institute 2019
Chateau Lake Louise
Lake Louise, AB, Canada
10-16 February 2019

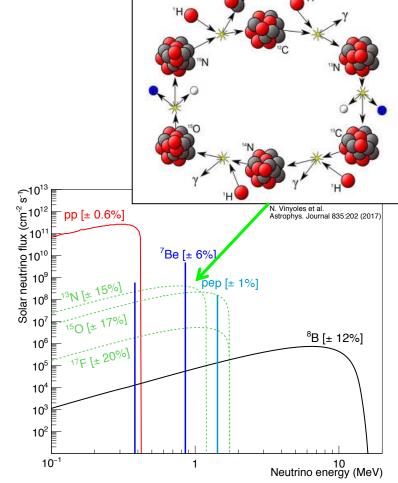
Borexino Latest Solar Neutrino Results

Davide D'Angelo on behalf of the Borexino Collaboration Università degli Studi di Milano Istituto Nazionale di Fisica Nucleare, sez. di Milano


Nuclear fusion in the Sun: the pp chain

$$4H + 2e^{-} \rightarrow {}^{4}He + 2e^{+} + 2v_{e} + 26.7MeV$$

 $p+p \rightarrow {}^{2}H + e^{+} + v$ 0.24% $p + e^{-} + p \rightarrow {}^{2}H + v_{e}$ $^{2}H + p \rightarrow ^{3}He + \gamma$ 16.70% $^{0.12\%}$ ³He + ⁴He → ⁷Be + γ 3 He $+^{3}$ He \rightarrow 4 He + 2p 7 Be+p \rightarrow 8 B+ γ $^{7}\text{Be} + \text{e}^{-} \rightarrow ^{7}\text{Li} + \text{v}_{e}$ ${}^{8}B \rightarrow {}^{8}Be^{*} + e^{+} + v_{e}$ $^{7}\text{Li+p} \rightarrow {^{4}\text{He}} + {^{4}\text{He}}$ $^8\text{Be}^{^\star} \rightarrow ^4\text{He} + ^4\text{He}$


Neutrino species are labeled after the reaction in which it is emitted:

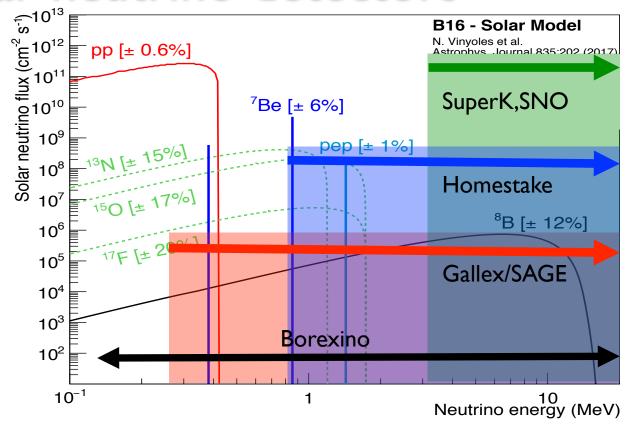
- pp-neutrinos
- ⁷Be-neutrinos
- pep-neutrinos
- 8B-neutrinos

- C, N, and O act as catalyzers of the same net reaction
- The CNO cycle has a strong temperature dependence
- It becomes dominant for stars heavier then the Sun
- In the Sun only about 1-2% of Energy is produced by CNO cycle
- The 3 neutrino species (¹³N, ¹⁵O, ¹⁷F) emitted by the CNO cycle reactions have never been observed so far.

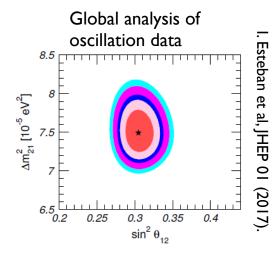
Why measure solar neutrinos?

Astrophysics

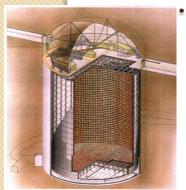
Original motivation of the first experiments on solar v was to test Standard Solar Model (SSM)


Study of the details of ν flux

Solar neutrino problem

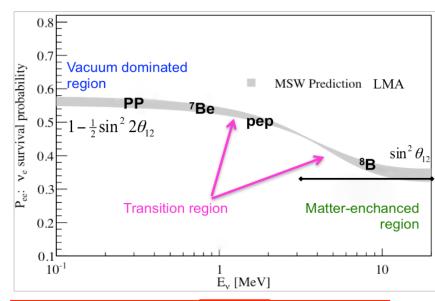

Particle physics

Solar v experiments played a major role in the discovery of oscillations

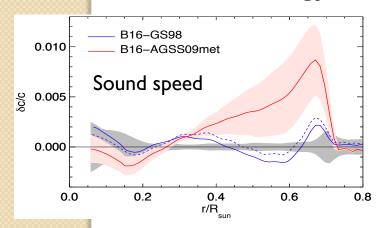

Solar neutrino detectors

- Confirmation of the basic energy production
- Solar Neutrino Problem was solved:
 - Evidence of ν oscillations
 - Interaction of v with matter MSW

...but we are still measuring


Water Cherenkov: Super-Kamiokande

> Liquid scintillator: Borexino


- I. Particle Physics interest: confirm LMA-MSW
- P_{ee} should show a Vacuum-to-Matter transition
- Non Standard Interactions could modify P_{ee} in the transition region
- Precise flux measurements of single spectral components
- Measure ⁸B with low threshold
- Have good accuracy for the lowest ⁸B energy bin

$$i\frac{d}{dt} \begin{pmatrix} \nu_e \\ \nu_\mu \end{pmatrix} = \begin{pmatrix} -\frac{\Delta m^2}{4E} \cos 2\theta + \sqrt{2}G_F N_e \\ \frac{\Delta m^2}{4E} \sin 2\theta & \frac{\Delta m^2}{4E} \cos 2\theta \end{pmatrix} \begin{pmatrix} \nu_e \\ \nu_\mu \end{pmatrix}$$

- 2. Astrophysics interest: the metallicity puzzle
- Since 2001: a new 3D analysis of spectroscopic data from photosphere indicates lower values of surface solar metallicity (LZ)
- But solar models reproducing these new LZ values disagree with helioseismology data

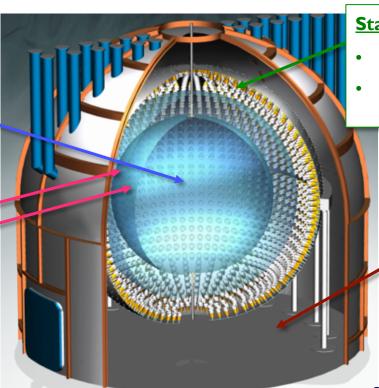
ν flux	GS98 (HZ)	AGSS09met (LZ)	cm ⁻² s ⁻¹	Δ
PP	5.98 (1±0.006)	6.03 (1±0.005)	× 10 ¹⁰	+0.8%
рер	1.44 (1±0.01)	1.46(1±0.009)	× 10 ⁸	+1.4%
⁷ Be	4.93 (1±0.06)	4.50 (1±0.06)	× 109	-8.7%
⁸ B	5.46 (1±0.12)	4.50 (1±0.12)	× 10 ⁶	-18%
13 N	2.78 (1±0.15)	2.04 (1±0.14)	× 108	-27%
150	2.05 (1±0.17)	1.44 (1±0.16)	× 10 ⁸	-24%

Solar v fluxes are potentially sensitive to the Sun metallicity

The Borexino Detector

Scintillator:

278 t PC+PPO (1.4 g/l)


Nylon vessels:

(125 μ m thick)

Inner r: 4.25 m

Outer r: 5.50 m

(radon barrier)

Stainless Steel Sphere:

- 2212 PMTs
- ~ 1000 m³ buffer of pc+dmp (light quenched)

Water Tank:

 γ and n shield μ water Č detector 208 PMTs in water 2100 m³

3800m w.e. of rock shielding

Borexino data taking campaign

May 2007 May 2010

Oct. 2011

temperature , stabilization

Jan 2017 - - ➤

Preparation

Phase I

Solar neutrinos

- ⁷Be v : Ist observation + precise measurement (5%); Day/Night asymmetry;
- pep $v : I^{st}$ observation;
- 8B v with low threshold;
- CNO v : best limit:

Purification

of water

cycles

- Phase 2 Solar neutrinos
- seasonal modulation of ${}^{7}\text{Be }\nu$ (Astr.Phys. 92 (2017) 21)
- Comprehensive measurement of ppchain solar neutrinos: Nature 562, 505-510 (2018)

pp $v: I^{st}$ observation (Nature 2014)

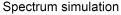
- more details pp, ⁷Be, pep: arXiV:1707.09279
- more details ⁸B: arXiV:1709.00756

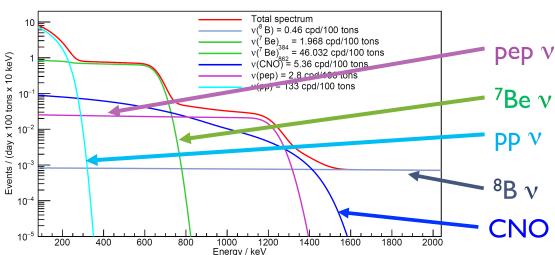
CNO

now

Campaign

nature

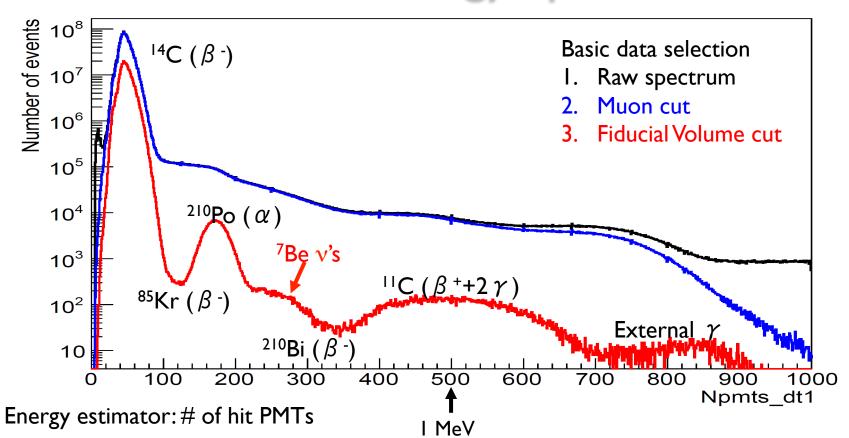

NEW!



Borexino's solar neutrino signals

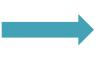
Elastic scattering on electrons

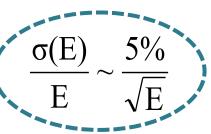
$$v_x + e^- \rightarrow v_x + e^-$$



So, what we see is only the energy carried away by the electron, NOT the total neutrino energy

The Borexino Energy spectrum

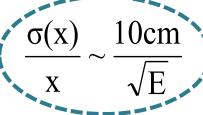


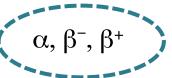

Borexino performance

For each scintillation event Borexino records

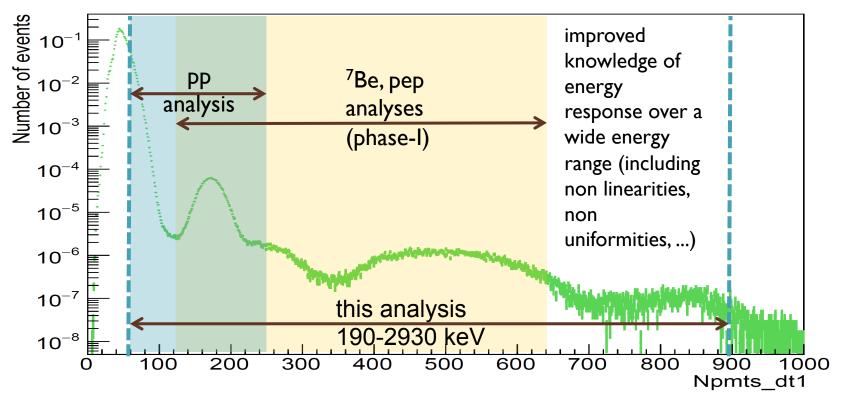
Number of collected photons [photoelectron yield ~ 500 p.e./MeV]

Energy

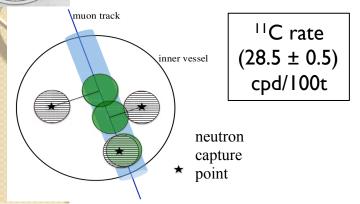

Time of arrival each photons

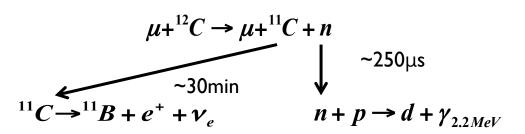


Position


Pulse-shape discrimination

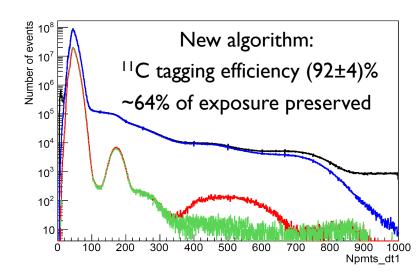
New wide energy range analysis




Data-set: Dec 14th 2011- May 21st 2016

Total exposure: 1291.51 days x 71.3 tons

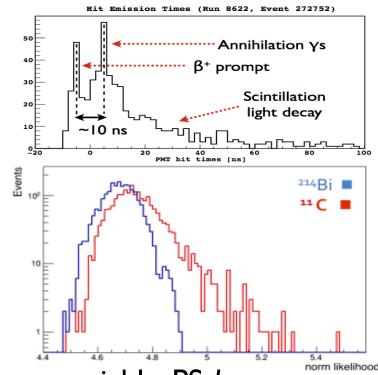
Fight ¹¹C:Three-Fold Coincidence (TFC)



The **likelihood** that an event is ¹¹C is computed from:

- 1. Space-time distance to the μ -track
- 2. Space-time distance to the neutron and to the neutron-projection on the track
- 3. neutron multiplicity
- 4. Muon dE/dx

(in phase-I we used a hard-cut based algorithm)

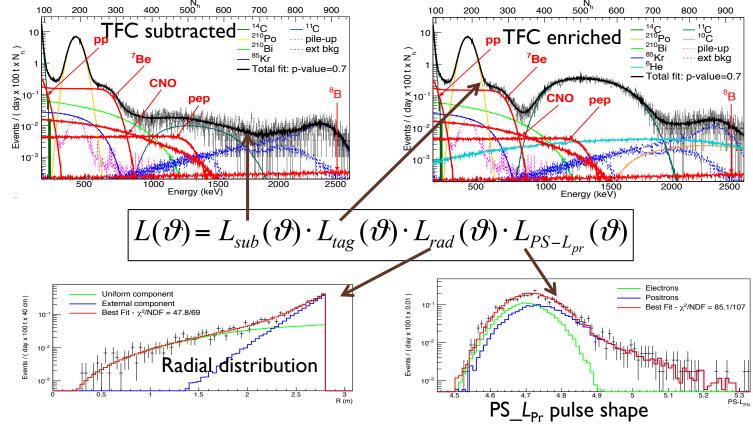


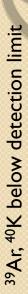
Fight ¹¹C: Pulse Shape Discrimination

¹¹C decays β +!

The scintillation time profile is different for e- and e+ for two reasons:

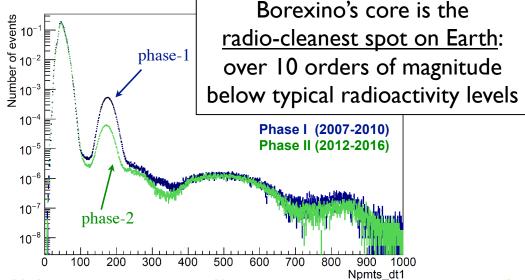
- in 50% of the case e⁺ annihilation is delayed by ortho-positronium formation (t~3ns)
- 2. e⁺ energy deposit is not point-like because of the two annihilation gammas




Identified a new pulse-shape variable: $PS-L_{PR}$ [the normalized output likelihood of the position reconstruction algorithm]

Multivariate fit

Maximize a binned likelihood through a multivariate approach



Borexino Phase-II backgrounds

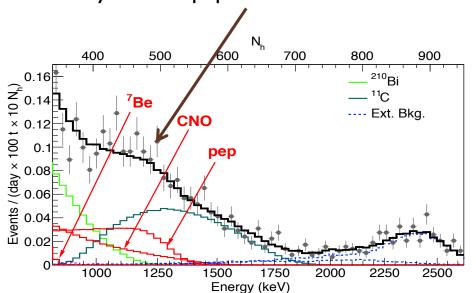
Background species	Rate (cpd/100t)
¹⁴ C (Bq/100t)	40.0±2.0
⁸⁵ Kr	6.8±1.8
²¹⁰ Bi	17.5±1.9
ПС	26.8±0.2
²¹⁰ Po	260.0±3.0
Ext 40K	1.0±0.6
Ext ²¹⁴ Bi	1.9±0.3
Ext ²⁰⁸ TI	3.3±0.1

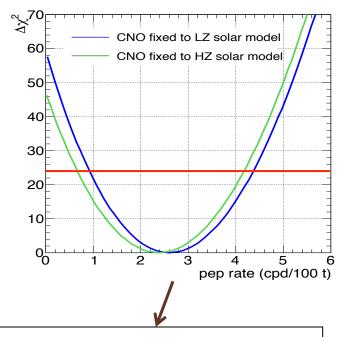
²³⁸U (from ²¹⁴Bi-Po) < 9.4 10^{-20} g/g 95% C.L. ²³²Th (from ²¹²Bi-Po) < 5.7 10^{-19} g/g 95% C.L. factor 4.6 reduction with respect to Phase-I

factor 2.3 reduction with respect to Phase-I

Whole energy range fit results

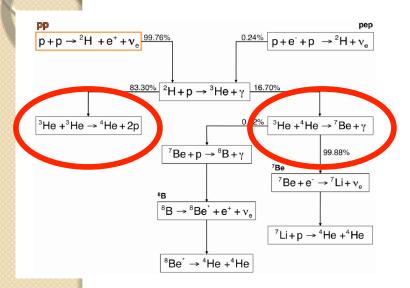
Rates	Borexino results (cpd/100t)	expected HZ cpd/100t	expected LZ cpd/100t	Uncertaincy reduction
PP	134 ± 10 ⁺⁶ -10	131.0 ± 2.4	132.1 ± 2.4	0.78
⁷ Be(862+384 keV)	48.3 ± 1.1 ^{+0.4} -0.7	47.8 ± 2.9	43.7 ± 2.6	0.57
pep (HZ-CNO)	$2.43 \pm 0.36^{+0.15}_{-0.22}$	2.74 ± 0.05	2.78 ± 0.05	0.41
pep (LZ-CNO)	$2.65 \pm 0.36^{+0.15}_{-0.24}$	2.74 ± 0.05	2.78 ± 0.05	0.61


Fluxes	Borexino results (cm ⁻² s ⁻¹)	expected HZ (cm ⁻² s ⁻¹)	expected LZ (cm ⁻² s ⁻¹)	
PP	$(6.1 \pm 0.5^{+0.3}_{-0.5}) 10^{10}$	5.98 (1± 0.006) 10 ¹⁰	6.03 (I± 0.005) 10 ¹⁰	
⁷ Be(862+384 keV)	$(4.99 \pm 0.13^{+0.07}_{-0.10}) 10^{9}$	4.93 (1± 0.06) 10 ⁹	4.50 (I± 0.06) 10 ⁹	
pep (HZ-CNO)	$(1.27 \pm 0.19^{+0.08}_{-0.12}) 10^{8}$	1.44 (1± 0.009) 10 ⁸	1.46 (1± 0.009) 10 ⁸	
pep (LZ-CNO)	$(1.39 \pm 0.19^{+0.08}_{-0.13}) 10^{8}$	1.44 (1± 0.009) 10 ⁸	1.46 (1± 0.009) 10 ⁸	


(compared to our previous results)

Evidence of pep ν signal

Applying more stringent cuts on FV and on the pulse-shape variable $PS_{L_{PR}}$ we can actually see the pep n shoulder!



 5σ evidence of pep signal (including systematic errors)

A probe of solar fusion

From Borexino new flux measurements:

$$R = 0.18 \pm 0.02$$

 The competition between pp-I and pp-II branches of the pp chain is given by the ratio:

$$R = \frac{\left\langle {}^{3}He + {}^{4}He \right\rangle}{\left\langle {}^{3}He + {}^{3}He \right\rangle} = \frac{2 \Phi({}^{7}Be)}{\Phi(pp) - \Phi({}^{7}Be)}$$

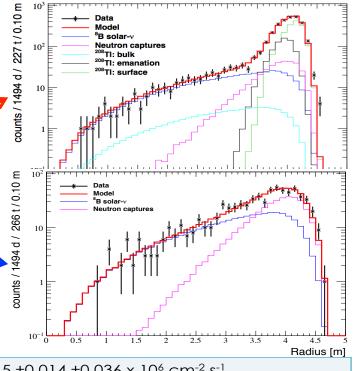
- From the pp and ⁷Be fluxes it is possible to determine the ratio R
- An important experimental test of the solar fusion
- Theoretical predictions:

$$R(HZ) = 0.18 \pm 0.01$$

$$R(LZ) = 0.16 \pm 0.01$$

Updated ⁸B neutrino flux

- Enlarged FV (most of scintillator)
- Data of Phase I+II: 2008 → 2016
- Exposure: I.5 kt y
- Fit of radial distributions in two energy ranges:
 LE: 3.2-6MeV_{kin}


Mean ν energy: 7.9 MeV HE: 6-17MeV_{kin}

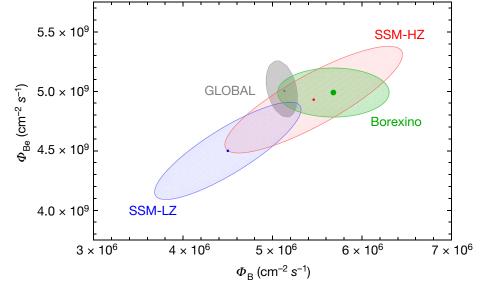
Mean ν energy: 9.9 MeV

 $R_{LE} = 0.133^{+0.013}_{-0.013} (stat)^{+0.003}_{-0.003} (syst) \text{ cpd/}100 \text{ t},$

 $R_{HE} = 0.087^{+0.010}_{-0.008} (stat)^{+0.005}_{-0.005} (syst) \text{ cpd/}100 \text{ t},$

 $R_{LE+HE} = 0.220^{+0.016}_{-0.015} (stat)^{+0.006}_{-0.006} (syst) \text{ cpd/}100 \text{ t.}$

SuperKamiokande	2.345 ±0.014 ±0.036 x 10 ⁶ cm ⁻² s ⁻¹
Previous Bx	2.4 ±0.4 x10 ⁶ cm ⁻² s ⁻¹
This measurement	2.55 ±0.18 ±0.07 x 10 ⁶ cm ⁻² s ⁻¹

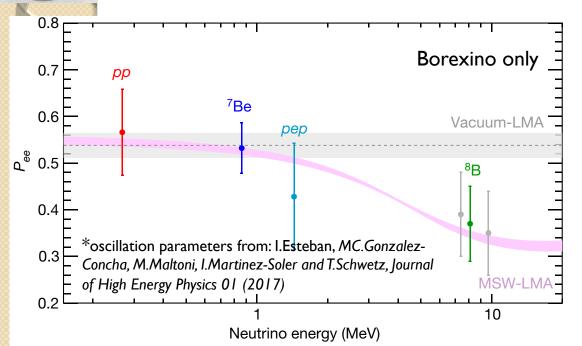


Implications for solar metallicity

Global fit of all solar, Kamland reactors, and new Borexino results

$$f_{\text{Be}} = \frac{\Phi(\text{Be})}{\Phi(\text{Be})_{\text{HZ}}} = 1.01 \pm 0.03$$

 $f_{B} = \frac{\Phi(\text{B})}{\Phi(\text{B})_{\text{HZ}}} = 0.93 \pm 0.02$


"Hint" towards High Metallicity?
LZ disfavoured at 96.6% C.L.
(BX only)

- Note: only I σ theorethical uncertainty in the plot
- Important to reduce the theorethical uncertainty

Survival probability meas. by Borexino

(assuming HZ-SSM)

- $P_{ee}(pp)=0.57\pm0.09$
- $P_{ee}(^{7}Be,862keV)=0.53\pm0.05$
- P_{ee}(pep)=0.43±0.11
 - $P_{ee}(^{8}B, 8.7MeV) = 0.37 \pm 0.08$

The whole pp-chain is measured by the same experiment!

Beyond solar neutrinos

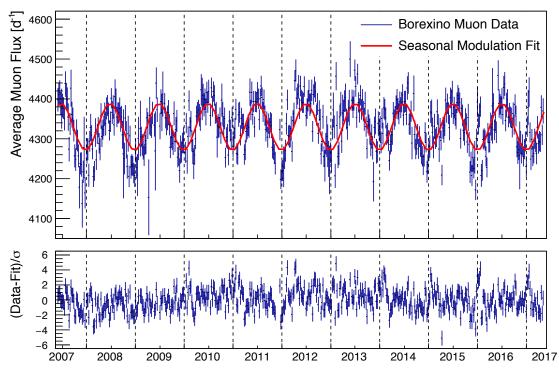
- Neutrino magnetic moment, PR D96 (2017) 091103
- Geo-neutrinos, PR D 92, 031101(R) (2015)
- Correlation with GRB, Astropart. Phys. 86 (2017) 11
- Correlation with GW, Astrophys. J. 850 (2017) 21
- SuperNova neutrinos
- Muons and cosmic backgrounds

NEW! 10y update

arXiv:1808.04207

(will appear on JCAP these days)

10yr muon modulation analysis

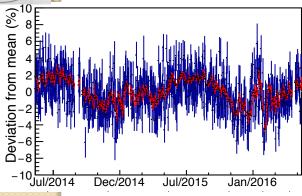

16th May 2007 - 16th May 2017

$$I_{\mu}(t) = I_{\mu}^{0} + \delta I_{\mu} \cos \left(\frac{2\pi}{T}(t - t_{0})\right)$$

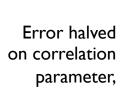
$$T = (366.3 \pm 0.6) \,\mathrm{d}$$

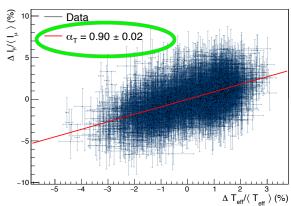
$$t_0 = (174.8 \pm 3.8) \,\mathrm{d}.$$

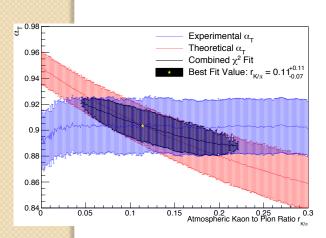
June 25th



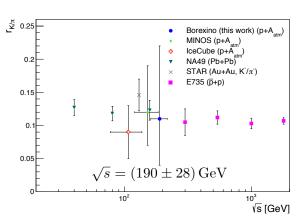
$$\delta I_{\mu} = (58.9 \pm 1.9) \,\mathrm{d}^{-1} = (1.36 \pm 0.04)\%$$


[check the paper for neutron modulation]




10yr muon modulation analysis

Modulation in agreement with atmospheric data.

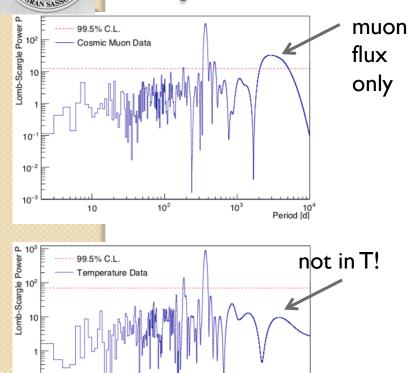


allows to measure kaonto-pion ratio...

$$r_{\text{K}/\pi} = 0.11^{+0.11}_{-0.07}$$

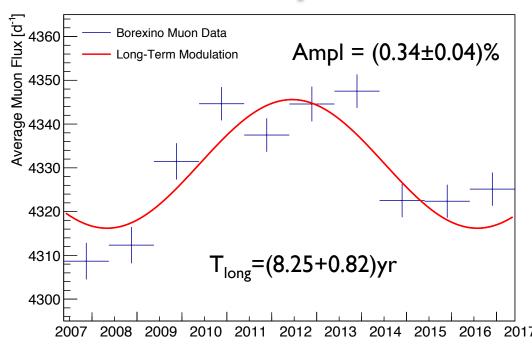
 $r_{\text{K}/\pi} = 0.149 \pm 0.06$

...and compare it with existing measurem ents



10-

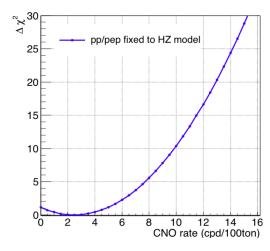
 10^{-2}


10

10yr muon modulation analysis

10²

10⁶ Period [d]



[check the paper for a speculative investigation on a possible correlation with the solar cycle]

What about measuring CNO?

with this analysis we has set limits

	Borexino result	Expected HZ	Expected LZ
CNO ν	< 8.1 95%C.L	4.91±0.56	3.62±0.37
	cpd/100t $ u$	cpd/100t	cpd/100t

- but can we make an actual observation?
- see next talk by Davide Basilico

- We are approaching 12 years of Borexino running with:
 - Unprecedented backgrounds
 - A thorough calibration-tuned MC effort
 - A new wide range multivariate fit strategy
- Borexino <u>alone</u> has performed the <u>full spectroscopy of pp-chain</u> neutrinos
 - ⁷Be flux at 2.5% uncertainty (stat+sys)
 - \circ 5 σ evidence of pep neutrinos
 - test of Sun's nuclear processes and its long term stability
- Stay tuned for more results!

Thank you for your attention!

ADDITIONAL MATERIAL

Borexino Collaboration

University of Houston

Universität Hamburg

Joint Institute for Nuclear Research

CENTER FOR ADVANCED STUDIE

The Standard Solar Model(s): SSM

- Most recent Standard Solar Model (SSM) is named B16
 - N. Vinyoles et al., Astroph. Journ. 835 (2017) 202
 - previous version was SFII (2011)
- Model the evolution of the star from formation until now 4.57 10⁹y
 - assume equilibrium between gravitation and pressure
- Input:
 - Solar Luminosity and Radius
 - Homogeneous mixture of H, He and "heavy" elements: $X_{ini}, Y_{ini}, Z_{ini}$
 - α_{MIT} : parameter entering in the description of the convection
 - Cross sections for nuclear reactions (S factors)
 - **Opacity**
- Observables:
 - Helioseismology
 - Solar Neutrinos

Neutrinos

↑ Density (kg/m3)

100 Convection Zone

Solar neutrinos on Earth

- Neutrino rate emitted by the Sun: $N_v = 1.8 \cdot 10^{38} \text{ V/s}$
- only electron flavor neutrinos are produced in the Sun
- How many do reach the Earth?

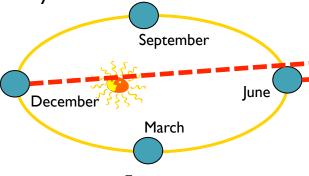
2 neutrinos produced per reaction

$$4H + 2e^{-} \rightarrow {}^{4}He + 2e^{+} + 2v_{e} + 26.7 \quad MeV$$

Luminosity of the Sun: 3.846 · 10²⁶ Watt

$$\Phi_{\nu_e} \simeq \frac{1}{4\pi D_{\odot}^2} \frac{2L_{\odot}}{(Q - \langle E_{\nu} \rangle)} = 6 \times 10^{10} \text{cm}^{-2} \text{s}^{-1}$$

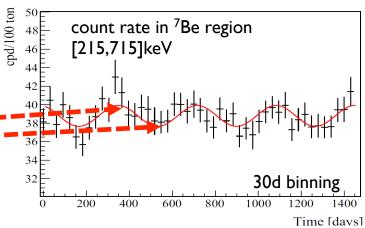
Distance Earth-Sun: ~1.5 · 10¹¹ m

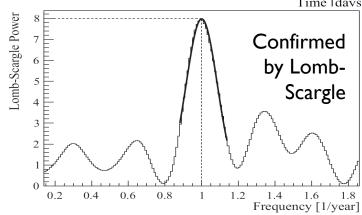

in the reaction: ~26.7 MeV

Energy carried away by ν : ~0.3MeV

Seasonal Modulation

Expected yearly modulation due to Earth's orbit eccentricity $\varepsilon = 1.67\%$


$$R(t) = R_0 + \overline{R} \left[1 + \epsilon \cos \frac{2\pi}{T} (t - \phi) \right]^2$$


Eccentricity
$$\varepsilon = (1.74 \pm 0.45)\%$$

Period T =
$$(367 \pm 10)$$
 days

Phase
$$\Phi = (-18 \pm 24)$$
 days

Borexino does indeed observe neutrinos from the Sun!

Fit strategy

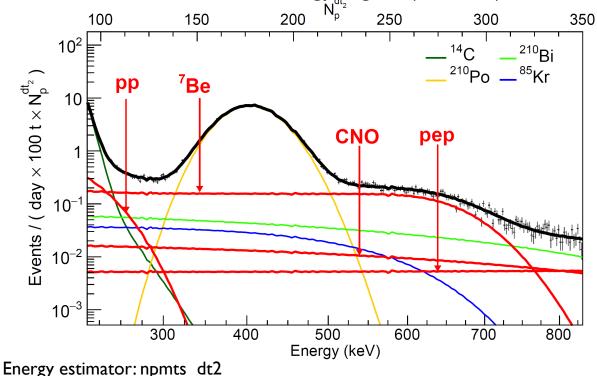
Radial distr. Pulse shape (ext. gammas)

Maximize a binned likelihood through a multivariate approach

$$L(\vartheta) = L_{sub}(\vartheta) \cdot L_{tag}(\vartheta) \cdot L_{rad}(\vartheta) \cdot L_{PS-L_{pr}}(\vartheta)$$
Energy

Monte Carlo

- Full simulation of energy loss, detector geometry, optical photons (scintill. & Cherenkov), PMTs & electronics response.
- Tuned with calibration data → sub% accuracy (Astrop. Phys. 97 (2018) 136 -159)
- Included known time variations of the detector (vessel shape, PMT status)
- Only free parameters:
 - solar v and background rate


Analytical

- Analytical model to link E to N_{pmt} , N_{hits} , N_{pe} (including scintillation and Cherenkov light)
- Models the E resolution
- Free fit parameters:
 - solar v and background rate
 - 6 model parameters: Light Yield, 2 resolution param., position & width of ²¹⁰Po peak, start of the ¹¹C spectrum
- Possibility to descrive unknown time variations

Example using the analytical fit

Zoom to the low energy region (200-830) keV

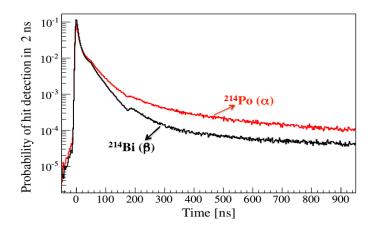
Sources of systematic errors

Two methods to take into account pile-up:

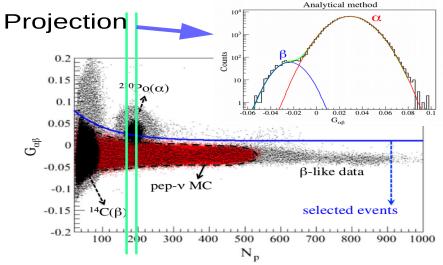
- Effects of non perfect modelling of the detector response;
- Uncertainty on theoretical input spectra (²¹⁰Bi)

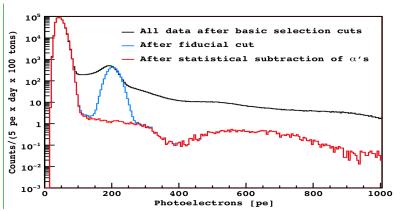
85Kr constrained to be
<7.5cpd/100t (95% C.L.) from</p>
Kr-Rb delayed coincidences

		p_{I}	p	⁷ E	Be	$p\epsilon$	\overline{p}
	Source of uncertainty	-%	+%	-%	+%	-%	+%
	Fit method (analytical/MC)	-1.2	1.2	-0.2	0.2	-4.0	4.0
	Choice of energy estimator	-2.5	2.5	-0.1	0.1	-2.4	2.4
1	Pile-up modeling	-2.5	0.5	0	0	0	0
	Fit range and binning	-3.0	3.0	-0.1	0.1	1.0	1.0
	Fit models (see text)	-4.5	0.5	-1.0	0.2	-6.8	2.8
	Inclusion of ⁸⁵ Kr constraint	-2.2	2.2	0	0.4	-3.2	0
	Live Time	-0.05	0.05	-0.05	0.05	-0.05	0.05
	Scintillator density	-0.05	0.05	-0.05	0.05	-0.05	0.05
	Fiducial volume	-1.1	0.6	-1.1	0.6	-1.1	0.6
	Total systematics (%)	-7.1	4.7	-1.5	0.8	-9.0	5.6



Improvement of the new analysis

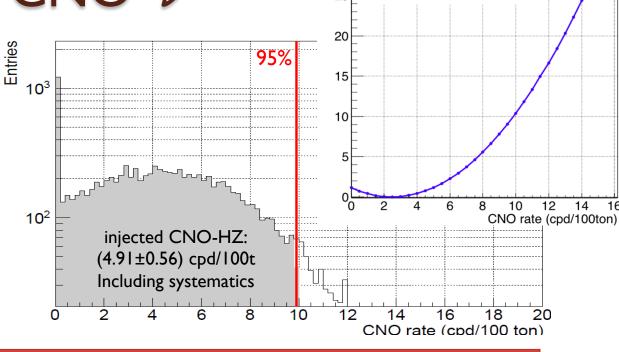

	Phase I	Phase II	Uncertainty reduction Phase II Phase I
рр	144 ± 13±10	134 ± 10 ⁺⁶ ₋₁₀	0.78
⁷ Be(862keV)	46.0 ± 1.5 ^{+1.6} _{-1.5}	46.3 ± 1.1 ^{+0.4} _{-0.7}	0.57
рер	3.1 ± 0.6 ± 0.3	(HZ) $2.43 \pm 0.36^{+0.15}_{-0.22}$ (LZ) $2.65 \pm 0.36^{+0.15}_{-0.24}$	0.61



PSD (α/β)

- Bin-by-bin statistical subtraction
- ♦ Formerly based on Gatti filter
- Now improving with Multi-Layer-Perceptron algorithm

TAOREXAND TAOREX TA

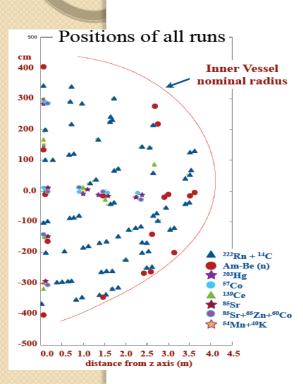

Limits on CNO ν

- Problem: CNO is highly correlated to pep and ²¹⁰Bi background
- Strategy: constrain the ratio pp/pep to 47.7±1.2
 - Include oscillations LMA-MSW
- Toy MC study of the sensitivity: 95% CL is

9 cpd/100t for LZ

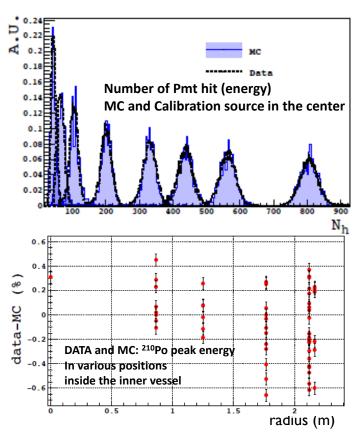
10 cpd/100t for HZ

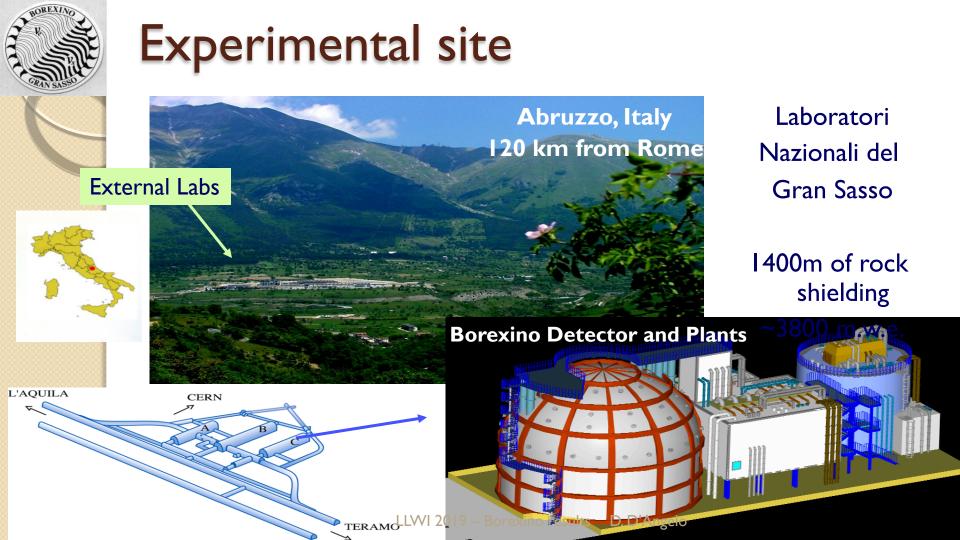
Previous limit (Phase I):
7.9 cpd/100t
(but with pep fixed!)



pp/pep fixed to HZ model

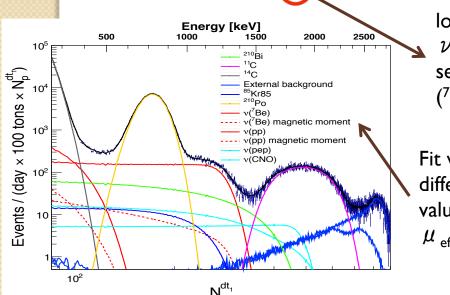
	Borexino result	Expected HZ	Expected LZ
CNO ν	< 8.1 95%C.L	4.91±0.56	3.62±0.37
	cpd/100t $ u$	cpd/100t	cpd/100t


THE SAME OF THE SA


Calibration and Monte Carlo

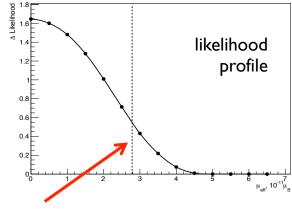
- 2008-2011: 4 internal + I external calibration campaigns
- Rn, neutrons, several gammas
- 184 locations covering the whole Inner Vessel
- Tuning MC for position, energy and PSD

Astropart. Phys. 97 (2018) 136



Limit on Neutrino Magnetic Moment

As neutrinos are massive, they can also have a MM An EW term could show up in ν -e scattering


 $rac{d\sigma_{ t EM}}{dT_e}(T_e,E_
u)=\pi\;r_0^2\;\mu_{eff}^2\left(rac{1}{T_c}
ight)-rac{1}{F_{c.}}
ight)$

low energy ν are sensitive (⁷Be, pp)

Fit with different values of μ_{eff}

[effective as it refers to the admixture of mass eigenstates reaching Earth]

 $\mu_{\rm eff}$ < 2.8x10⁻¹¹ $\mu_{\rm B}$ at 90% C.L. about 2x lower than phase-l best limit for $\mu_{\rm eff}$