

Hyunkwan Seo for the RENO Collaboration Seoul National University

Lake Louise Winter Institute 2019 Chateau Lake Louise, AB, Canada, February. 10-16, 2019

RENO Collaboration

Reactor Experiment for Neutrino Oscillation

(9 institutions and 40 physicists)

- Chonnam National University
- Dongshin University
- GIST
- Gyeongsang National University
- KAIST
- Kyungpook National University
- Seoul National University
- Seoyeong University
- Sungkyunkwan University

■ Total cost : \$10M

Start of project : 2006

 The first experiment running with both near & far detectors from Aug. 2011

RENO Experimental Set-up

Motivation

Reactor Antineutrino Anomaly

- ~6% deficit of measured reactor neutrino flux compared to the prediction with new predicted flux evaluation in 2011 by Huber and Mueller.
- Deficit of observed reactor neutrino fluxes relative to the prediction (Huber + Mueller model) indicates an overestimated flux or possible oscillation to sterile neutrinos.

The possibility that reactor anomaly is due to miscalculation of one or more of the ²³⁵U, ²³⁹Pu, ²³⁸U and ²⁴¹Pu antineutrino fluxes is investigated by observing fuel-composition dependent variation of reactor antineutrino yield and spectrum.

C. Giunti, Phys. Lett. B 764, 145 (2017)

F. P. An et al. (Daya Bay Collaboration), PRL 118, 251801 (2017)

RENO Collaboration, arXiv:1806.00574 (submitted to PRL)

Reactor Fuel Isotope Fraction

The Fission fraction of an isotope varies with fuel-burning

Reactor for Antineutrino Source

Reactor: A copious and isotropic source of electron antineutrinos

~3 GW_{th} or ~1 GW_{elec} per reactor

3 GW_{th} reactor → 6 x10²⁰ $\bar{v_e}$ /sec

- 3-4% accurate neutrino source
- 0.13% uncertainty of IBD cross section

[* P. Huber, Phys. Rev. C84, 024617 (2011) T. Mueller *et al.*, Phys. Rev. C83, 054615 (2011)]

Observable Reactor Neutrino Spectrum

Evolution of Fuel Composition at RENO

Effective fission fraction of ²³⁵U (weighted by each reactor's thermal power and fission fraction)

8 groups of near IBD samples with equal statistics according to ²³⁵U isotope fraction

Effective Fission fraction for each isotope

$$F_{i}(t) = \sum_{r=1}^{6} \frac{W_{th,r}(t)\bar{p}_{r}(t)f_{i,r}(t)}{L_{r}^{2}\bar{E}_{r}(t)} / \sum_{r=1}^{6} \frac{W_{th,r}(t)\bar{p}_{r}(t)}{L_{r}^{2}\bar{E}_{r}(t)}$$

Predicted IBD Yield per Fission

IBD yield per fission for each isotope

(Total # of produced IBD events)

$$y_i = \int \sigma(E_{\nu}) \phi_i(E_{\nu}) dE_{\nu}$$

IBD cross Antineutrino section spectrum (i : each isotope) (H-M model)

Average IBD yield per fission

(for each 8 group, j)

$$\bar{y}_{f,j} = \sum_{i=1}^4 \bar{F}_{i,j} y_i$$

 $\overline{F}_{i,j}$: Effective Fission fraction for each isotope

	H-M model (10^{-43} cm²/fission)
<i>y</i> ₂₃₅	6.70 +- 0.14
<i>y</i> ₂₃₉	4.38 +- 0.11
y_{238}	10.07 +- 0.82
y_{241}	6.07 +- 0.13 ₉

Measurement of IBD Yield per Fission

Measurement of IBD yield per fission $(\overline{y}_{f,i})$ for each group

Number of IBD events after subtracting background is obtained for each group, j. Then $\bar{y}_{f,j}$ is determined by solving the following equation.

$$\text{\# of Observed IBD } \underbrace{N_j}_{r=1} \underbrace{\sum_{t=1}^6 \frac{N_p}{4\pi L_r^2}}_{f} \int dt \left[\underbrace{\frac{W_{\text{th},r}(t)\overline{P}_r(t)}{\sum_i f_{i,r}(t)E_i}}_{\text{\# of Target proton}} \right] \underbrace{\epsilon_{\text{d}}(t)}_{\text{Efficiency}} \text{Detection Efficiency}_{\text{Efficiency}}$$

'Measured IBD yield per fission' corresponding to average IBD yield per fission

Average IBD yield per fission

(for each 8 group, j)

$$\bar{y}_{f,j} = \sum_{i=1}^{r} \bar{F}_{i,j} y_i$$

 $\overline{F}_{i,j}$: Effective Fission fraction for each isotope

Fuel-Composition Dependent Reactor Neutrino Yield

Measured total averaged IBD yield per fission (\overline{y}_f)

= $(5.84 \pm 0.13) \times 10^{-43}$ cm²/fission

Ratio (Data /H-M model) for the total average IBD yield

= $0.940 \pm 0.021 \rightarrow (6.0 \pm 2.1)\%$ deficit

Averaged IBD yield per fission (\overline{y}_f) vs $\overline{F}_{i,j}$

- → slope means different neutrino spectrum for each isotope
- \rightarrow rules out the no fueldependent variation at **6.6** σ

The scaled model indicates the reactor antineutrino anomaly

Measurement of y_{235} and y_{239}

The best-fit measured yields per fission of ²³⁵U and ²³⁹Pu

The best-fit values

$$y_{235}$$
 = 6.15 ± 0.19 (2.8 σ deficit)
 y_{239} = 4.18 ± 0.26 (0.8 σ deficit)

H-M model

$$y_{235}$$
 = 6.70 ± 0.14
 y_{239} = 4.38 ± 0.11

Reevaluation of the y_{235} may **mostly solve** the reactor antineutrino **anomaly.**But 239 Pu is **not entirely** ruled out as a possible source of the anomaly.

Correlation of 5 MeV excess with fuel ²³⁵U

2.9σ indication of 5 MeV excess coming from ²³⁵U fuel isotope fission!!

of reactor cycle)

of reactor cycle)

θ_{13} and $|\Delta m^2_{ee}|$ in RENO

Phys. Rev. Lett. 121, 201801 (2018. 11. 15)

$$\sin^2 2\theta_{13} = 0.0896 \pm 0.0068 (7.6 \%)$$

 $0.0896 \pm 0.0048 (\text{stat.}) \pm 0.0047 (\text{syst.})$

$$|\triangle \mathbf{m}_{ee}^{2}| = 2.68 \pm 0.14 \ (\times 10^{-3} \text{ eV}^{2}) \ (5.2 \%)$$

 $2.68 \pm 0.12 (\text{stat.}) \pm 0.07 (\text{syst.})$

Comparison of θ_{13} and $|\Delta m^2_{ee}|$

Summary

- RENO report a fuel-dependent IBD yield and energy spectrum using 1807.9 live days (Aug. 2011 – Feb. 2018) of near detector data
- Rules out the no fuel-dependent variation at 6.6σ
- Measured IBD yield per fission for individual isotope

```
y_{235} = 6.15 \pm 0.19 \rightarrow 2.8\sigma deficit compared to H-M model (6.70 ± 0.14) y_{239} = 4.18 \pm 0.26 \rightarrow 0.8 \sigma deficit compared to H-M model (4.38 ± 0.11)
```

- Reevaluation of the y_{235} may **mostly solve** the reactor antineutrino anomaly. However ²³⁹Pu is **not entirely** ruled out as a possible source of the anomaly.
- First hint for correlation between 5 MeV excess and ²³⁵U fission fraction

Thanks for your attention!