Latest TZK results and status

Joanna Zalipska on behalf of T2K Collaboration

National Centre for Nuclear Research, Warsaw, Poland

Neutrino physics

$$\mathbf{U_{PNMS}} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos\theta_{23} & \sin\theta_{23} \\ 0 & -\sin\theta_{23} & \cos\theta_{23} \end{pmatrix} \begin{pmatrix} \cos\theta_{13} & 0 & \sin\theta_{13}e^{-\delta_{CP}} \\ 0 & 1 & 0 \\ -\sin\theta_{13}e^{-\delta_{CP}} & 0 & \cos\theta_{13} \end{pmatrix} \begin{pmatrix} \cos\theta_{12} & \sin\theta_{12} & 0 \\ -\sin\theta_{12} & \cos\theta_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

- Neutrino flavor eigenstates are not identical to mass eigenstates, consequence v oscillations and non zero v masses
- Is CP conserved or violated?
- What is the v mass ordering?
- Are there only 3 v types?

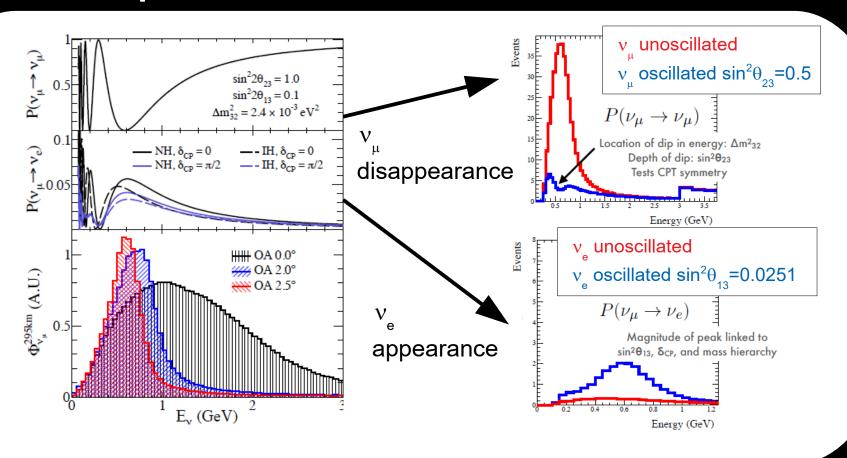
$$\theta_{23} = 50.6 + -1.7^{\circ}$$

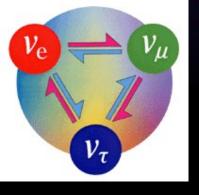
$$\theta_{12} = 33.6 + -0.80^{\circ}$$

$$\theta_{13} = 8.37 + -0.15^{\circ}$$

$$\Delta m_{21}^{2} = 7.53 + -0.18 \times 10^{-5} \text{eV}^{2}$$

$$|\Delta m_{32}^{2}| = 2.51 + -0.05 \times 10^{-3} \text{eV}^{2}$$


$$\delta_{\text{CP}} = ?$$

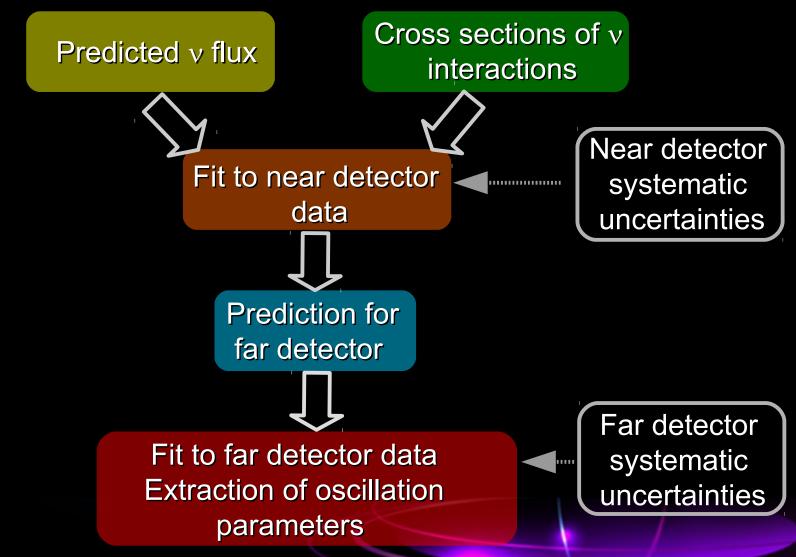

T2K experiment

- 2.5° off-axis beam of v_{μ} or $\overline{v_{\mu}}$ produced by J-PARC accelerator
- Near Detector located 280 m from v source:
 - Constrains systematic errors for ν flux
 - Measures v cross-sections
- Super-Kamiokande far detector located 295 km from J-PARC:
 - 50 kt water Cerenkov detector filled with ultra-pure water
 - Can distinguish ν_{μ} and ν_{e} interactions

Principles of the T2K v oscillations

What's new

- About 30% more \overline{v} data $1.12 \times 10^{21} \rightarrow 1.63 \times 10^{21} \text{ POT}$
- Update reactor constraints to recent PDG2018 values:
 - Old PDG2016:

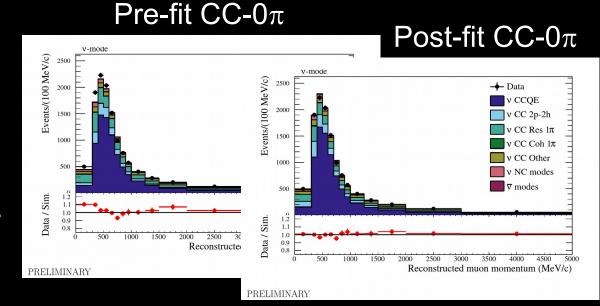

$$\sin^2\theta_{13} = 0.0219 +- 0.0012$$

($\sin^22\theta_{13} = 0.086$)

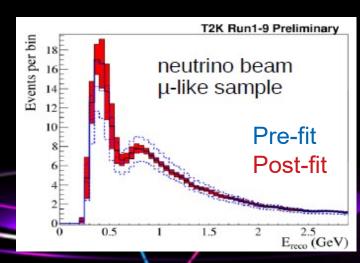
- New PDG2018:

$$\sin^2\theta_{13} = 0.0212 +- 0.008$$

($\sin^22\theta_{13} = 0.083$)

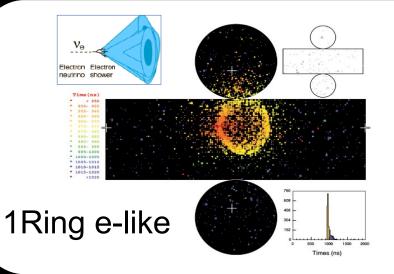

Strategy of oscillation analysis

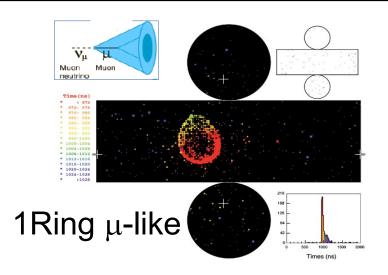
Near Detector Measurement


Fit to Near Detector data:

- v data samples CC-0π, CC-1π, CC-Other
- v data sample CC-1Track, CC-Ntrack etc.
- Constrain flux and crosssection errors

Errors on SK event rate

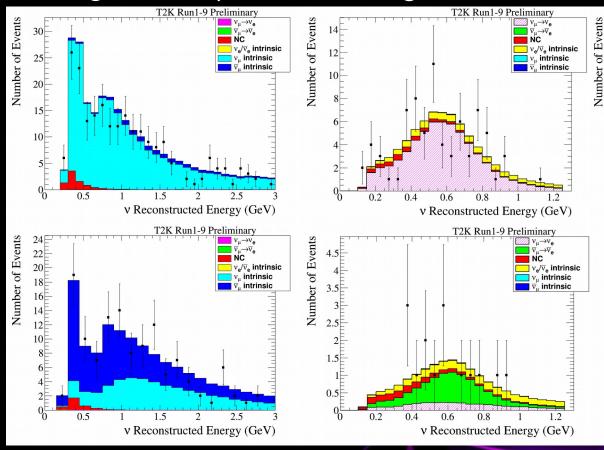

Sample	w/o ND280	W/ ND280
ν 1Rμ-like	14.6%	5.1%
ν 1Re-like	16.9%	8.8%
$\frac{-}{\nu}$ 1R μ -like	12.5%	4.5%
\overline{v} 1Re-like	14.4%	7.1%

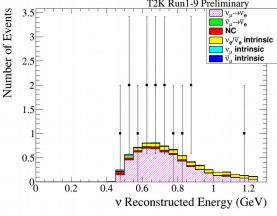


T2K data sample

Prediction with: $\sin^2\theta_{13} = 0.0212$, $\sin^2\theta_{23} = 0.528$, $\Delta m_{32}^2 = 2.51 \times 10^{-3} \text{eV}^2$, NH

Sample	$\delta_{\text{CP}} = -\pi/2$	$\delta_{CP} = 0$	$\delta_{CP} = \pi/2$	$\delta_{CP} = \pi$	Observed
ν 1Rμ-like	272.4	272.0	272.4	272.8	243
$\overline{\stackrel{-}{v}}$ 1R μ -like	139.5	139.2	139.5	139.9	140
v 1Re-like	74.4	62.2	50.6	62.7	75
\bar{v} 1Re-like	17.1	19.4	21.7	19.3	15
v 1Re decay e	7.0	6.1	4.9	5.9	15

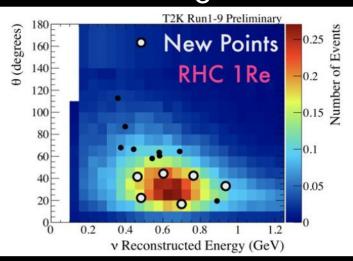


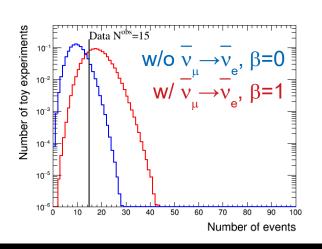


T2K data sample 1.49x10²¹ v + 1.63x10²¹ v POT

1-ring CCQE μ-like

1-ring CCQE e-like 1-ring CC-1π e-like

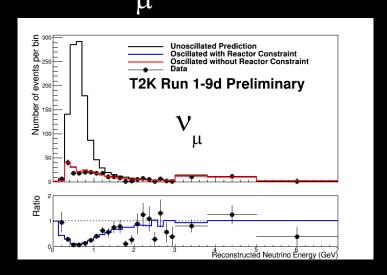

Assuming:

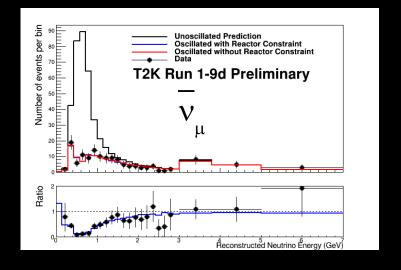

$$\delta_{CP} = -\pi/2$$

Normal Hierarchy $\sin^2\theta_{23}$ =0.528

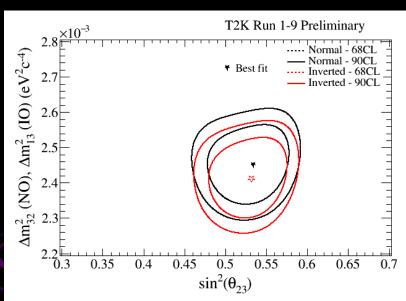
$$\sin^2\theta_{13} = 0.0212$$

New T2K v_e appearance results

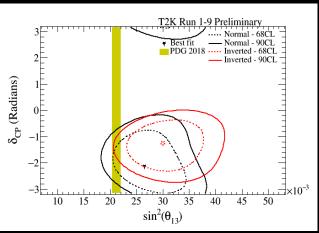


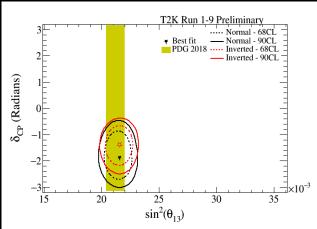

$$P(\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{e}) = \beta \times P_{PNMS}(\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{e})$$

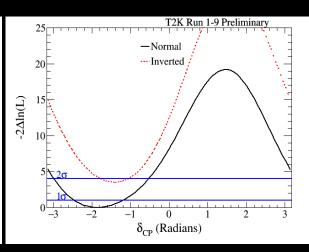
Analysis	P-value $β=0$ (σ excluded)	P-value $β=1$ (σ excluded)
Rate only	0.0686 (1.82σ)	0.246 (1.16σ)
Rate+Shape	0.0224 (2.25σ)	0.261 (1.12σ)


- For Rate+Shape no oscillation hypothesis is excluded at 2.25σ
- More data are needed

The v disappearance results

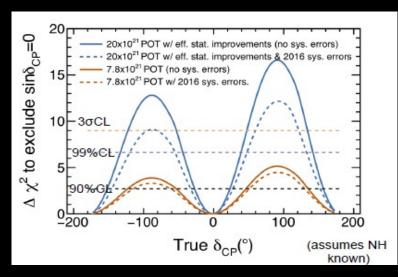

- The best fit point: $\sin^2\theta_{23} = 0.532$ $\Delta m_{32}^2 = 2.452 \times 10^{-3} \text{ eV}^2$
- T2K data are compatible with maximal mixing




The T2K CP Violation Results

w/o reactor const.

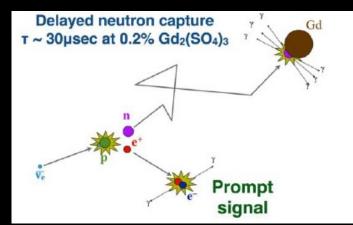
w/ reactor const.



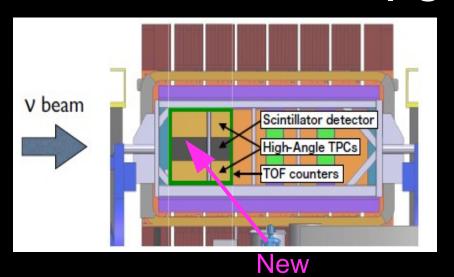


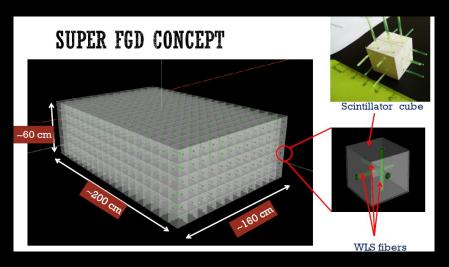
- Preferred value around $\delta_{CP} = -\pi/2$ with the best fit point of $\delta_{CP} = -1.885$
- δ_{CP} 2 σ intervals:
 - Normal Hierarchy [-2.966, -0.628] radians
 - Inverted Hierarchy [-1.799, -0.979] radians
- CP conserving values ($\delta_{\rm CP}$ =0 or π) disfavored at 2σ level
- Need more data to reach 3σ result

T2K future prospects

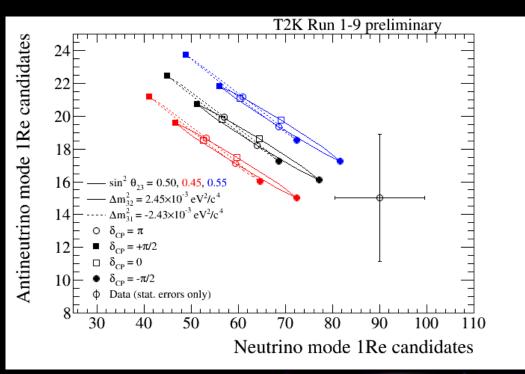


- T2K-II plans to collect 20 x 10²¹ POT by 2027~2028
- May reach 3σ sensitivity to δ_{CP} =0 by ~2026
- Beam line upgrade expected beam power 1.3 MW
 - -reduce repetition rate 2.48 s→ 1.16 s
 - more protons per pulse $2.4 \rightarrow 3.2 \text{ x } 10^{14}$
 - 320 kA horn current
- Super-K Gadolinium upgrade
- Near Detector upgrade


Super-K Gd upgrade


- Super-Kamiokande plans to load Gadolinium to the water tank, 0.02% Gd₂(SO₄)₃ by 2019/2020 0.2% later
- Gd can capture thermal neutrons providing delayed gamma signal, so it can tag $v_{\underline{a}}$
- May help v/v discrimination for T2K analysis
- SK tank was drained and opened in summer 2018
- Repairs were done: cleaning, water sealing, tank piping, replacement of dead PMTs
- Tank filling begun in Oct 2018 now tank is almost full.

Near Detector upgrade


- New part composed of scintillator target SuperFGD, 2 horizontal TPC and TOF detector
- Designed to reduce Near Detector systematic <4%
- Will provide:
 - 4π coverage for μ tracks, better short track recon. and good timing
- Beam test were performed at CERN during summer 2018
- Planned to be installed in 2021

Summary

- T2k has provided many interesting results
- The analysis of v_{μ} data gives 2σ hint for v_{e} appearance
- The CP conserving values of $\delta_{_{\text{CP}}}$ = 0 and π lie outside of 2σ interval
- Need more data for precise measurements
- It has been proposed to extend T2K run
- Upgrades of various parts of the experiment are underway

Backup slides

Probability of v_e appearance versus v_e appearance

