Status of NEOS Experiment

Jinyu Kim

Sejong University

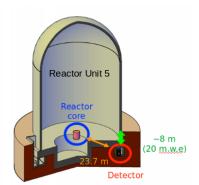
on behalf of NEOS Experiment

February 13, 2019

LLWI 2019

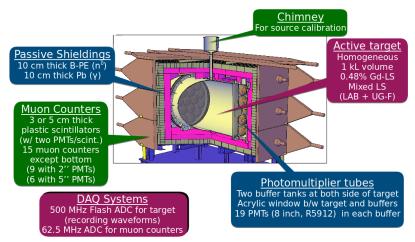
Contents

- Introduction
- NEOS Phase-I
 - Overview
 - Result
- NEOS Phase-II
 - Overview
 - Construction
 - Monitoring
 - Data
 - Simulation
- Summary



NEOS Experiment

- Neutrino Experiment for Oscillation at Short baseline.
- ν Source : Reactor unit 5 in Hanbit Nuclear Power Plant, Yeonggwang, Korea
 Low enriched uranium fuel, 2.8 GW_{th} commercial reactor
- Detector deployment : Tendon gallery (~23.7 m from reactor core unit 5)
- Data Taking Period
 - \rightarrow NEOS Phase-I : Sep 2015 $^{\sim}$ May 2016 (180/46 live days with reactor on/off, Completed)
 - → NEOS Phase-II : Sep 2018 ~ (500 live days, full fuel cycle, Running)
- Location



Hanbit Reactor & Tendon Gallery

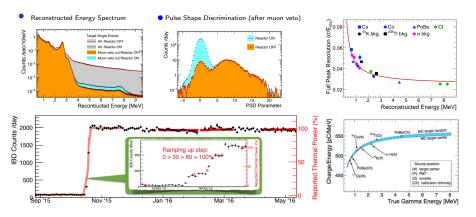
NEOS Detector

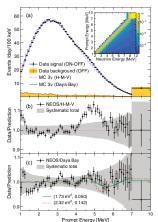
NEOS Phase-I & II have same detector structure.

NEOS Collaboration

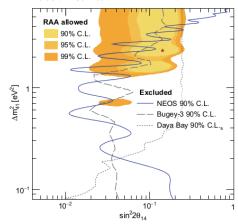
19 members from 7 institutes.

Chung-Ang University(CAU)
Institute for Basic Science(IBS)
Korea Atomic Energy Research Institute(KAERI)
Kyungpook National University(KNU)
Korea University(KU)
Sejong University(SJU)
Sungkyunkwan University(SKKU)



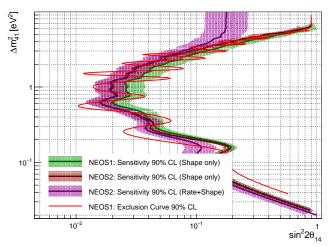

NEOS Phase-I

- To verify the possible existence of a eV scale sterile neutrino
- Analyzing the spectral shape (not the absolute rate) of reactor antineutrino
- Period: Sep 2015 ~ May 2016 (180/46 live days with reactor on/off)
- Energy Resolution : 5% at 1 MeV
- IBD Rate : 1977 events/day(on), 85 events/day(off) (S/B ~ 22)

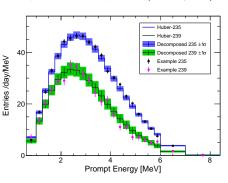


NEOS Phase-I: Results

- 5 MeV bump seen at short baseline. (NEOS Only)
- No strong sign of sterile neutrino in the detector sensitivity, from comparison with the Daya Bay spectrum.
- Phys. Rev. Lett. 118. 121802 (2017)
- Prompt Energy Spectrum & Ratio



Exclusion Curves

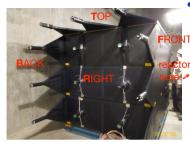

NEOS Phase-II : Rate + Shape

- Period: 500 days (full fuel cycle, Phase-II) vs. 180 days (Phase-I)
- Rate + shape analysis for sterile neutrino search
- Detector Sensitivity for Sterile Neutrino Search

Spectrum Decomposition

- ullet Decomposition of u fluxes from primary fission elements
 - → Study the origin of the flux/spectral anomaly
- Fission Fractions (Real Data)
- 0.8 1235 1238 1239 1241 1235 0.4 1239 1241 0.2 1239 0.4 1235 0.4 1239 0.4 1235 0.4
- Spectrum Decomposition (10k Toy MC)

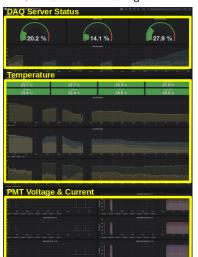
Detector Refurbishment : Phase-I → Phase-II


Target

Detector

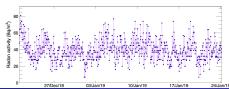
Muon Counter

Gd-LS Production

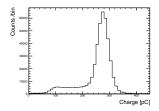


Detector Deployment (September 3 ~ 19, 2018)

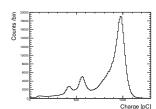
Monitoring


- Real-time monitoring for run/hardware status & radon activity
- Slow Control Monitoring

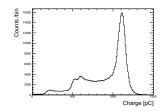
Run Monitoring

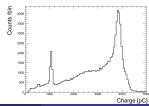


• Radon Monitoring (Radon Eye)

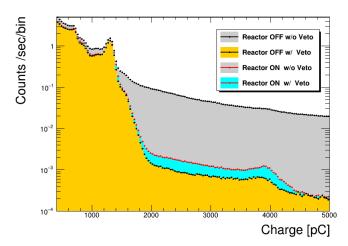


Source Calibration


- Source calibration is performed biweekly. (calibration source: ¹³⁷Cs, ⁶⁰Co, ²²Na, ²⁵²Cf)
- Source is placed at the center of target tank.
- Plan to perform 3-D calibration soon.
- ¹³⁷Cs Charge Distribution


²²Na Charge Distribution

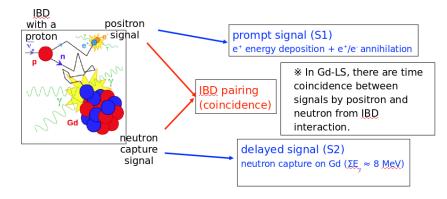
60 Co Charge Distribution



²⁵²Cf Charge Distribution

Single Events in Phase-II Data

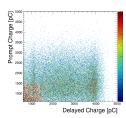
- No notable difference for the number of single events between reactor on and off.
- Muon Rate : ~ 260 Hz
- Single Event Charge Distribution

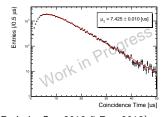


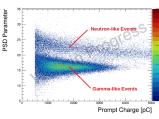
Reactor Anti-neutrino Measurement

• Neutrino source: β -decay in the reactor core $n \rightarrow p + e^- + \bar{\nu}_e$

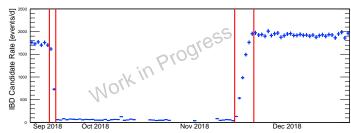
• Neutrino detection: Inverse beta decay (IBD) in the active target
$$\bar{\nu}_e + p \rightarrow n + e^+$$

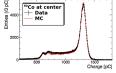

• IBD in the Gd loaded liquid scintillator (Gd-LS)

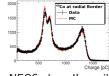


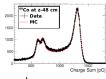

IBD Candidate (Roughly) in Phase-II Data

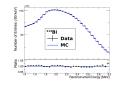
- IBD cut : muon veto, charge, multiplicity, PSD
- Charge Distributions
- Coincidence Time


Pulse Shape Discrimination

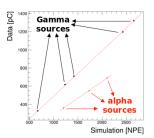


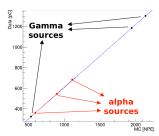

IBD Candidate Rate (Period : Sep 2018 ~ Dec 2018)




Simulation

- NEOS Simulation is based on Geant 4
- MC describes data well in NEOS phase-I

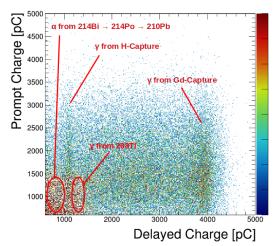




- Upgrade of MC for NEOS phase-II → will be ready soon
 - α and γ can be explained at the same time via 2nd order Birks formula
 - Phase-I data is used for study. (phase-II will be tuned.)
- Birks Formula 1st order (Phase-I)

Birks Formula 2nd order (Phase-II)

Summary


- NEOS: "Neutrino Experiment for Oscillation at Short baseline."
 - Location: Tendon Gallery of Reactor Unit 5, Hanbit Nuclear Power Plant, Yeonggwang, Korea
 - Baseline: ~23.7 m from reactor core
 - Homogeneous, 1 ton of Gd-LS active target
- NEOS phase-I was completed in Sep 2015 ~ May 2016
 - 180 live days reactor ON data.
 - 5 MeV bump seen at this short baseline.
 - No strong sign of sterile neutrino in the detector sensitivity.
 - Phys. Rev. Lett. 118. 121802 (2017)
- NEOS phase-II is ongoing from Sep 2018
 - Rate + Shape Analysis & Spectrum Decomposition
 - Plan to collect 500 live days data (full fuel cycle + 2 reactor off period(~40 days each))
 - · Refurbished detector from phase-I is deployed
 - Data taking is going smoothly

Thank You!

Backup Slides

IBD Candidate Charge Distribution

- 214 Bi \rightarrow 214 Po : Beta Decay / 214 Po \rightarrow 214 Pb : Alpha Decay (contaminated by air)
- $^{208}\text{TI} \rightarrow ^{208}\text{Pb}$: Beta Decay \rightarrow Gamma Decay (from borated PE)

Significance Test

- 0.3M sets of pseudo-experiments for significance test
- There is no strong evidence of light sterile neutrino with 3+1 hypothesis.

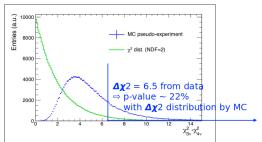


FIG. S1. The y^2 difference between the 3-v hypothesis and the best fit for 3+1 hypothesis from 200,000 Monte Carlo (MC) data sets generated based on 3-v hypothesis with statistical and systematic fluctuations (blue). For the uncertainties of the neutrino flux, the data from Fig. 29 in Ref. [31] are used. The p-value corresponding to Δy^2 =6.5 is estimated at 22%. Superimposed is the χ^2 distribution with two degrees of freedom (green).