

Shedding new light on GRBs with polarisation data Geneva University 2018-11-28

SPHiNX

Satellite Polarimeter for High eNergy X-rays

Wark Pearce KTH, Sweden on behalf of the SPHiNX team

Design and calibration:

M. Chauvin et al. (PoGOLite), Exp. Astronomy 41 (2016) 17 M. Chauvin et al. (PoGO+), Astroparticle Physics 82 (2016) 99 M. Chauvin et al. (PoGO+), NIM A 859 (2017) 125

First measurement of polarised emissions from Crab in hard X-ray band (18-160 keV)

- Phase integrated PF ~ $(21\pm5)\%$
 - Purely toroidal magnetic field with isotropic particle distribution ⇒ PF = 37%
 - Indicates degree of disorder in emission region
 - Explore further with MHD/ PIC simulations
 - AstroSat CZTI claimed a variable PF for the Crab "offpulse" region. Not expected in high-energy emission models. Refuted by PoGO+.

M. Chauvin et al. (PoGO+), MNRAS 477 (2018) L45

- PoGO+ results: **PF<8.6% (90% CL)** & **PA=(I54±3I)°**.
- **PA** is parallel with radio jet*, (158±5)°, **i.e. perpendicular to the accretion disk.** *Stirling et al. 2001; Fender et al. 2006.
- No sign of strong gravity **extended corona model is favoured by PoGO**+ **measurements.**
- In progress: polarimetric constraint on hard X-ray synchrotron jet emission

M. Chauvin et al. (PoGO+), MNRASL (2018). In review.

After PoGO+: X-Calibur

- New instrumental approach for hard X-ray polarimetry.
 - "Funnel -vs- bucket"
- Test flight 2016. Antarctica flight 2018. Vela X-1 main target.
- Future flights planned with upgraded telescope, XL-Calibur.
 - Simultaneous observations with IXPE?

Scientific questions

- Are GRB jets highly magnetised? 1.
- How is the gamma-ray emission produced? 2.
- 3. What is the geometric structure of GRB jets?

Observables

- **Polarisation fraction (1,2)**
- **Polarisation angle (3)**
- Energy (2)
- Timing (3)
- Location (all)

AFTERGLOW

X-RAYS,

VISIBLE LIGHT,

RADIO

WAVES

JET COLLIDES WITH

AMBIENT MEDIUM [external shock wave]

SPHiNX

Satellite Polarimeter for High eNergy X-rays

Phase A/B1 Report

Principal Investigator: Mark Pearce Department of Physics & KTH Space Centre KTH Royal Institute of Technology

E-mail: pearce@kth.se / Tel: +46 (0)70-166 74 86

Submission date: 2017-10-06

Contents

INTRODUCTION					
1	REQ 1.1 1.2	UIREMENTS Science requirements Mission requirements	5 5 5		
2	DESI 2.1 2.2 2.3 2.4 2.5	GN REPORTS	5 5 5 5 5		
3	TECH 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9	HNICAL REPORTS Laboratory-based tests of prototype detectors Polarimeter background studies Polarimeter performance studies Polarimeter calibration plan Science utilisation Science data centre Structural analysis and test plan Preliminary thermal analysis Assembly integration and test plan	5566666666		
4	4.1 4.2 4.3 4.4 4.5 4.6	AGEMENT REPORTS Project management plan Work breakdown structure and work packages Time plan Cost estimate and requests for quotations Product assurance plan Risk analysis and mitigation plan	6 6 6 6 6		
5	CAD 5.1 5.2	MODELS PDF 3D	777		

Mission overview

Phase A baseline design

Orbit inclination/altitude	53° / 500 km
_aunch type	Piggy-back (e.g. PSLV)
Duration	2 years
Payload / total mass	25 kg / 68 kg
Payload volume	48×53×70 cm ³
Payload / total power	28 W / 27 W
Downlink (S-Band)	150 MB/pass. 1 pass/day.
Pointing	Quasi-zenith, 3-axis stabilised. 0.1° precision

X-ray polarimetry

Instrument characteristics

• Observe ~200 GRBs / 2 years

- Field-of-view ~120°
- Geometric area ~800 cm²
- Determine light-curve and spectral shape (~10-600 keV)
 - dE < 30% (60 keV)
- Timing to ~1 ms (UT synchronised)

- Determine Polarisation Fraction (PF) and Polarisation Angle (PA) with ~10% ("MDP<0.3") precision for ~50 (long) GRBs / 2 years
- Energy range: 50-600 keV

Instrument characteristics

LEO background

Background mitigation

- Periphery of scintillator array covered in Pb/Sn/Cu shield
- 1 mm CFRP shell covers sides/top of array
- Albedo attenuated by InnoSat

Geant4 simulations						
Prompt						
Component	One-hit rate (Hz)	Two-hit rate (Hz)				
Cosmic X-ray	1270	195				
Albedo gamma	398	113				
Albedo neutron	14	5				
Primary particles	16	5				
Secondary particles	9	5				
Total	1707	323				
Delayed (platform	190 (after 1 year)					

+ Delayed (platform activation)

190 (alter 1 year)

- InnoSat platform mass model implemented
- Background spectra as used for HXMT. Solar minimum conditions.
- ~5.5 h/day in SAA (80% duty cycle)
 - Trapped fluxes from SPENVIS.
 - AP-8 (protons activation). AE-8 (electrons).

F. Xie & M. Pearce, Galaxies 6 (2018) 50

'Measurement' sample

Model discrimination?

- Stand-alone localisation performance studied
 - Flat geometry not ideal...
- Baseline: 1 downlink/day ⇒ **localise on-ground**
- Single hits (>50 keV) used
- Response database from Geant4
- Three (simple!) algorithms considered: "modulation curve for outer units", "χ² minimisation", "max. likelihood"

- Localisation uncertainty ≤ 5° for median fluence GRBs in Fermi-GBM catalogue
- Cannot localise weaker GRBs.

L. Heckmann et al., SPIE JATIS (2018), in review.

preamp/shaper/peak detect/digitise

- SPHiNX baseline uses the IDEAS "SIPHRA"
 - 16 ch / +ve "pC", -ve "nC"
 - In-built 12 bit ADC, 50 kips
 - ~20 mW
 - Radiation tolerant by design
- Two channels (different gain settings) required per PMT/MPPC channel for desired dynamic range
 - Plastic/PMT: 10-270 keV + 50-500 keV
 - GAGG/MPPC: 10-100 keV + 20-650 keV

GAGG + MPPC 20-650 keV

- Also studying Weeroc CITIROC
 - 32 ch / +ve "400 pC"
 - External ADC needed
 - 225 mW
 - Radiation tolerant?
- Current focus on MPPC read-out...
 - MPPC+GAGG: as SIPHRA
 - MPPC+plastic?

POLAR plastic scintillator* (6×6 mm²) + MPPC

MPPC array is under study...

*Thanks to Merlin Kole.

Toy polarimeter

- Scatterer: POLAR plastic scintillator (6×6 mm)
- Absorber: GAGG scintillator
- Read out: CITIROC
- Can we align our developments with POLAR-2?

Summary & outlook

- SPHiNX is a hard X-ray GRB polarimeter proposed for the Swedish InnoSat platform
- Phase A studies completed in 2018
- Swedish Space Agency selected atmospheric/climate-related missions for InnoSat-I (launch 2019) /-2 (launch 2022)
- So, what next? Wait for InnoSat-3? Very interested in POLAR-2.
- Last, but not least: Congratulations on the impressive first results from POLAR!

