Probing the GRB prompt emission mechanism, magnetic field geometry, and jet structure with linear polarization

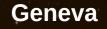
Ramandeep Gill

The Open University of Israel Institute for Theoretical Physics, Frankfurt

Collaborators: Jonathan Granot & Pawan Kumar

Nov. 27, 2018

Shedding new light on GRBs with polarization data

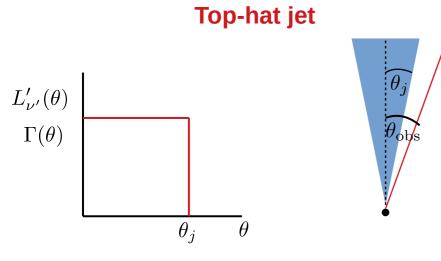


Outline of the talk

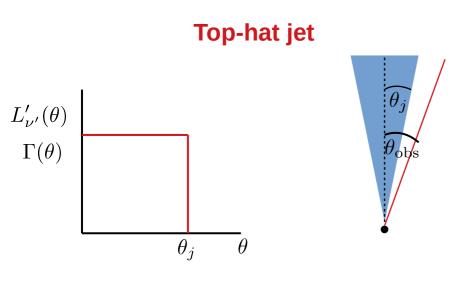
Structured jets

- Dependence of fluence on the viewing angle
- Limitation to small viewing angles due to compactness
- Polarization from different radiation processes: Top-hat jet Vs structured jet
 - Synchrotron emission
 - Temporal evolution
 - Different B-field configurations
 - Non-dissipative photospheric emission
 - Compton drag
- Change in net polararization when integrating over multiple pulses
- Monte-Carlo simulation of polarized emission from a large sample of GRBs
 - What can we say about the B-field structure?
 - Can we infer anything about the jet structure?

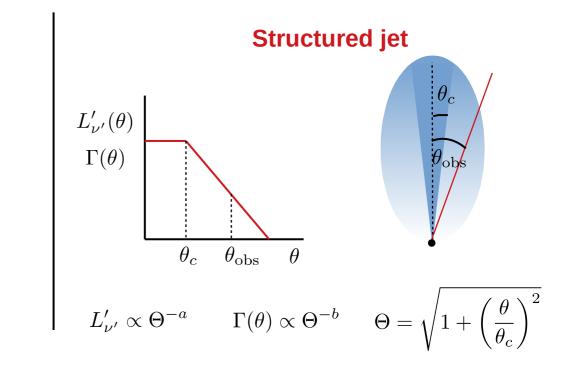
Structured jets

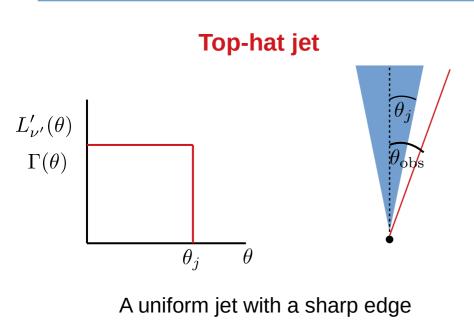


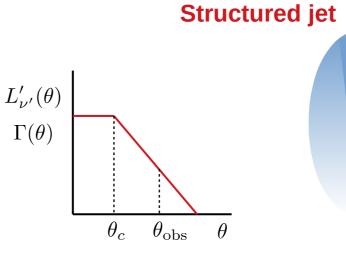
A uniform jet with a sharp edge



A uniform jet with a sharp edge







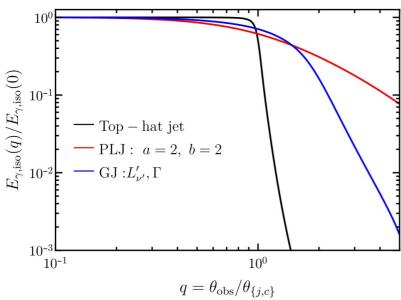
$$L'_{\nu'} \propto \Theta^{-a} \qquad \Gamma(\theta) \propto \Theta^{-b} \qquad \Theta = \sqrt{1 + \left(\frac{\theta}{\theta_c}\right)}$$

 θ_c

 $\theta_{\rm ob}$

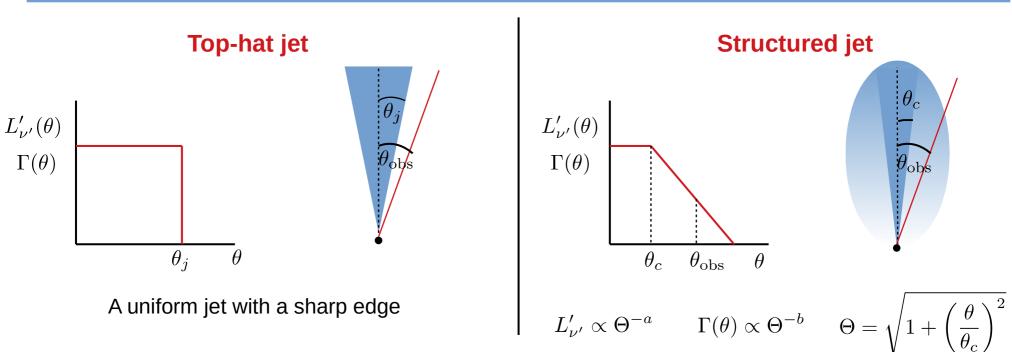
 $\mathbf{2}$

Off-axis to on-axis fluence ratio



$$E_{\gamma,\text{iso}} = \frac{4\pi d_L^2}{(1+z)} S_{\gamma}$$
$$S_{\gamma} = \int dt_{\text{obs}} \int_{\nu_1}^{\nu_2} d\nu F_{\nu}(t_{\text{obs}})$$

- Fluence is suppressed for off-axis observers, which makes it hard to detect distant off-axis GRBs. (Granot+02; Yamazaki+03; Eichler & Levinson 04; Salafia+15)
- Structured jets are visible over much larger angular scales than top-hat jets.



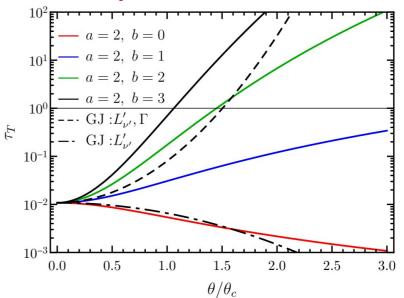
• Pair-production and its effect on the spectrum becomes important when the compactness of the flow is high.

$$\ell_{\gamma}' = \sigma_T \frac{U_{\gamma}'}{m_e c^2} \frac{R}{\Gamma} = f_{\gamma\gamma}^{-1} \tau_T$$

 High Thomson scattering optical depth due to pairs can suppress γ-ray emission

$$\tau_T \approx \epsilon_{\gamma} f_{\gamma\gamma} \frac{3\sigma_T}{8m_e c^4} \frac{L_k(\theta)}{\Gamma^5 t_{v,z}}$$

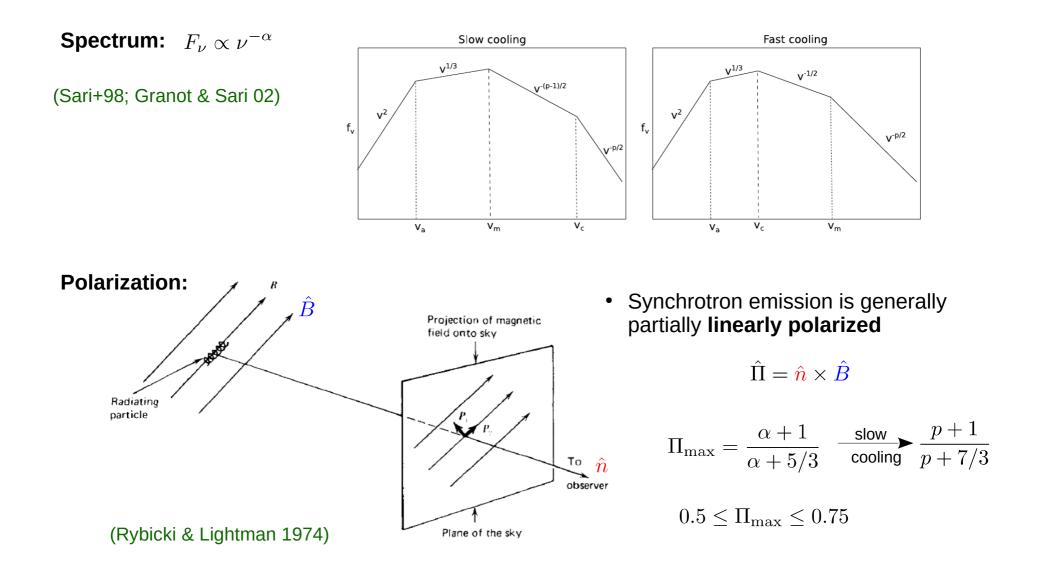
Compactness constraints



Polarization from different radiation processes

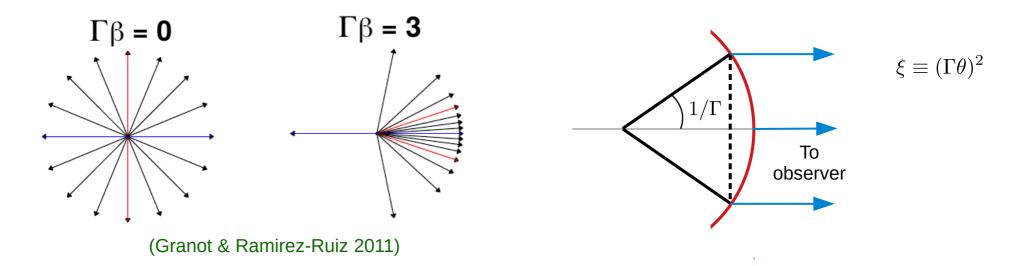
Synchrotron emission

- Relativistic particles (e^- or e^{\pm}) gyrate around magnetic field lines and emit synchrotron photons.
- Energy distribution of particles follow a power law: $n_e(\gamma_e) \propto \gamma_e^{-p} \qquad \gamma_m < \gamma_e < \gamma_M$



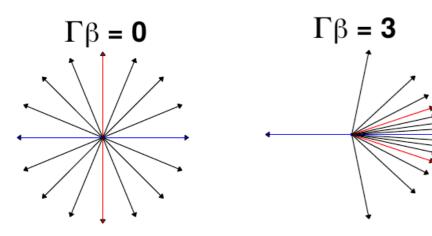
Synchrotron emission – random B-field

Abberration of light in a relativistic outflow



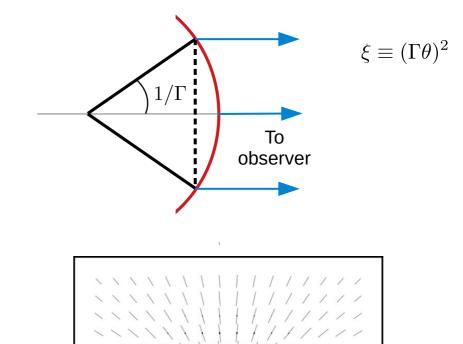
Synchrotron emission – random B-field

Abberration of light in a relativistic outflow



(Granot & Ramirez-Ruiz 2011)

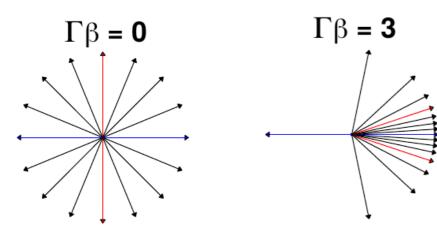
 Greater degree of symmetry in the polarization vectors, when observed over the entire GRB image, leads to smaller degree of net polarization



Random B-field (B_{\perp})

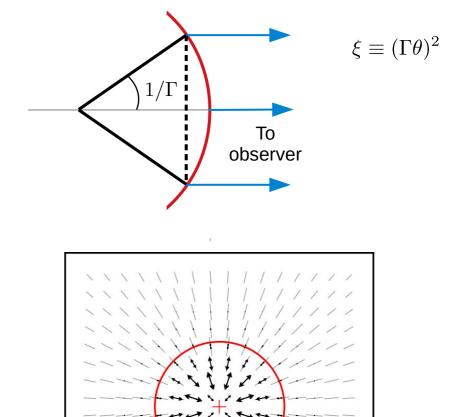
Synchrotron emission – random B-field

Abberration of light in a relativistic outflow



(Granot & Ramirez-Ruiz 2011)

- Greater degree of symmetry in the polarization vectors, when observed over the entire GRB image, leads to smaller degree of net polarization
- One way to **break the symmetry** is by having the line-of-sight close to the jet edge (in a tophat jet), which will not cancel all the polarization. (Waxman 03)

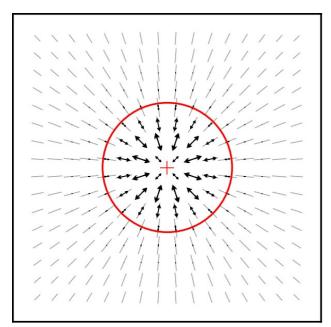


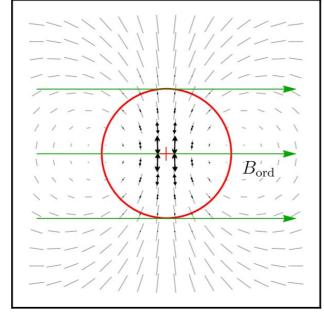
Random B-field (B_{\perp})

Synchrotron emission – B-field structure

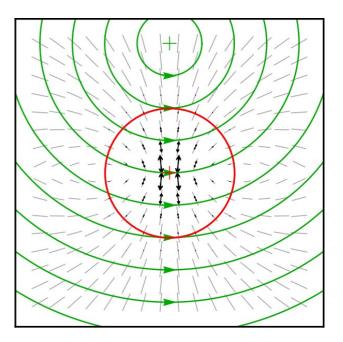
• Large scale B-field breaks the symmetry and yields higher levels of polarization.

(Granot & Ramirez-Ruiz 11; Gill+18, in prep.)





Ordered B-field

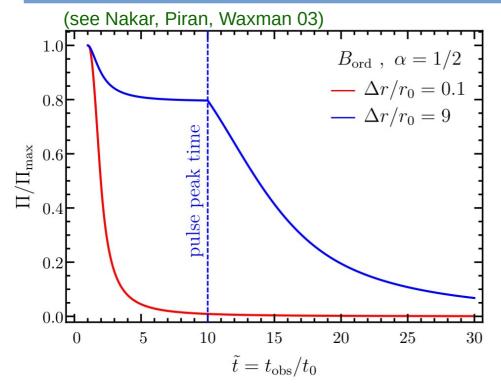


Random B-field (B_{\perp})

- Random B-field in the plane transverse to the radial vector
- We also consider B-field parallel to radial vector B_{\parallel}

Toroidal B-field (B_{tor})

Temporal evolution of polarization over a single pulse



 Consider an ordered B-field in the entire observed region and a relativistic spherical shell emitting between radii

 $r = r_0$ and $r = r_0 + \Delta r$

Emission arrives over two timescales:

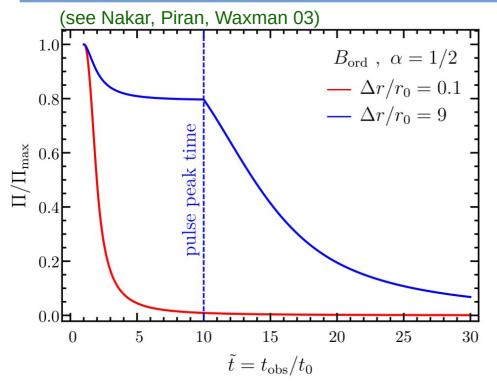
Radial time:

 $\frac{t_{\rm obs,r}}{(1+z)} = \frac{\Delta r}{2\Gamma^2 c}$

Angular time:

 $\frac{t_{\text{obs},\theta}}{(1+z)} = \frac{r_0}{2\Gamma^2 c}$

Temporal evolution of polarization over a single pulse



Integration over the entire pulse

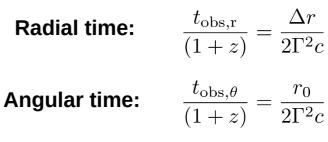
- **Simplifying assumption**: Synchrotron emissivity and properties of the emission region do not vary with radius
- This is equivalent to delta-function emission in radius, and the total polarization is obtained by integrating over large angular scales around the LOS:

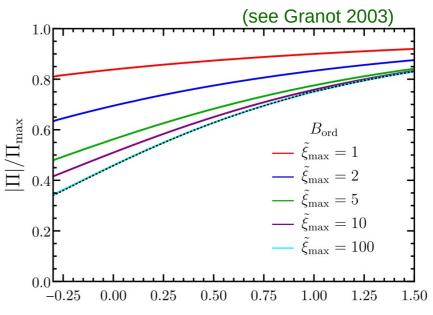
$$\tilde{\xi}_{\max} = (\Gamma \tilde{\theta}_{\max})^2 > 1$$

 Consider an ordered B-field in the entire observed region and a relativistic spherical shell emitting between radii

 $r = r_0$ and $r = r_0 + \Delta r$

Emission arrives over two timescales:

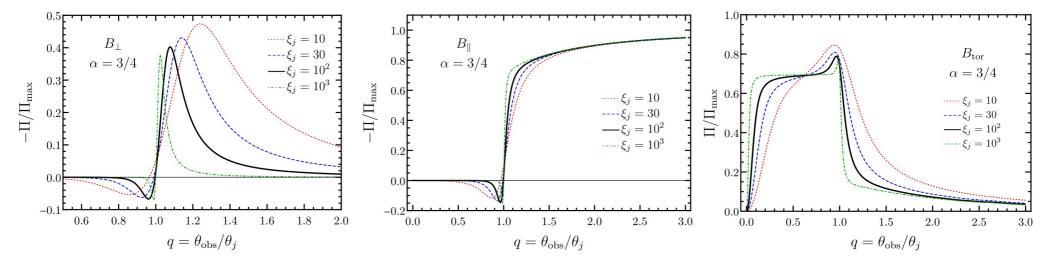




Synchrotron emission – Polarization

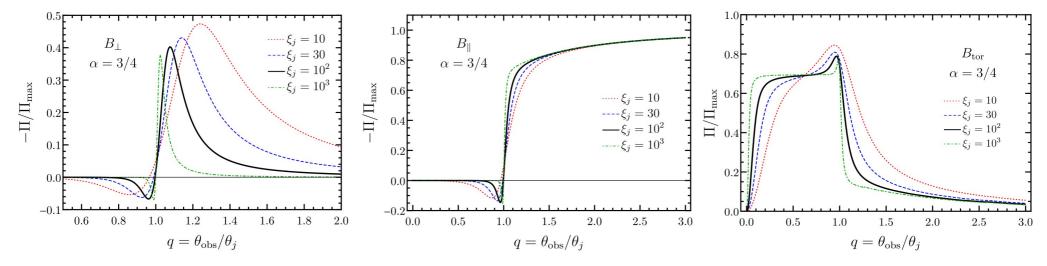
Top-hat jet

(Granot 03; Granot & Taylor 05; Gill+18, in prep.)

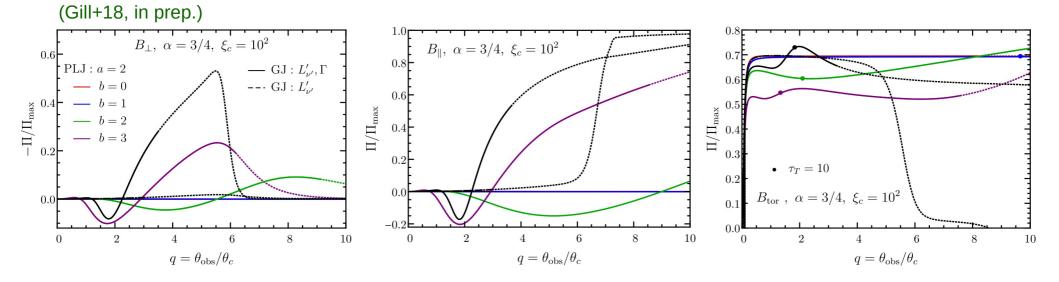


Synchrotron emission – Polarization

(Granot 03; Granot & Taylor 05; Gill+18, in prep.)



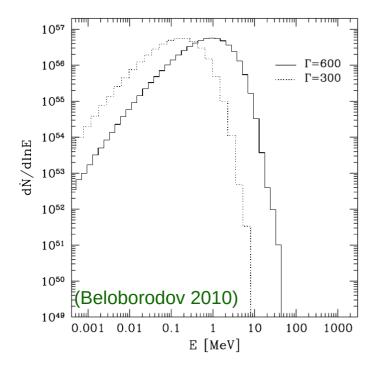
Structured jet



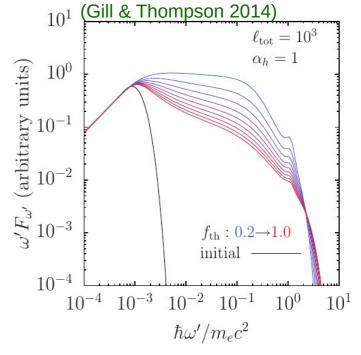
Photospheric emission

- Close to the central engine, the flow is launched highly optically thick to pair-production where it is thermalized via Comptonization.
- Adiabatically cooled thermal radiation is released at the photosphere. (Goodman 86, Paczynski 86)
- Dissipation below and above the photosphere produces the non-thermal GRB spectrum. (Thompson 94; Eichler & Levinson 00; Meszaros & Rees 05; Lazzati+09; Peer & Ryde 11; Begue+13; Thompson & Gill 14; Gill & Thompson 14; Vurm & Beloborodov 16)

Non-dissipative outflow



Heated outflow



• Spectrum shown in the comoving frame, with different levels of heating.

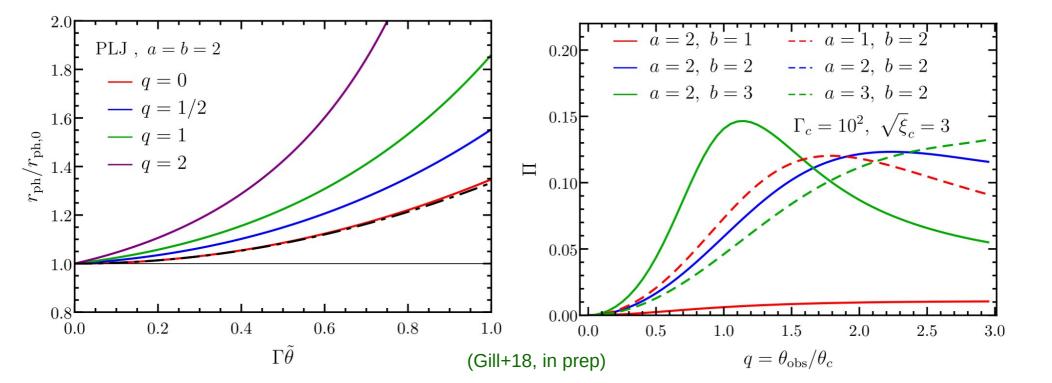
Non-dissipative photospheric emission - Polarization

• We solve the equations of radiative transfer for an **ultra-relativistic spherical flow** and calculate the Stoke parameters in the comoving frame (see next talk by A. Beloborodov):

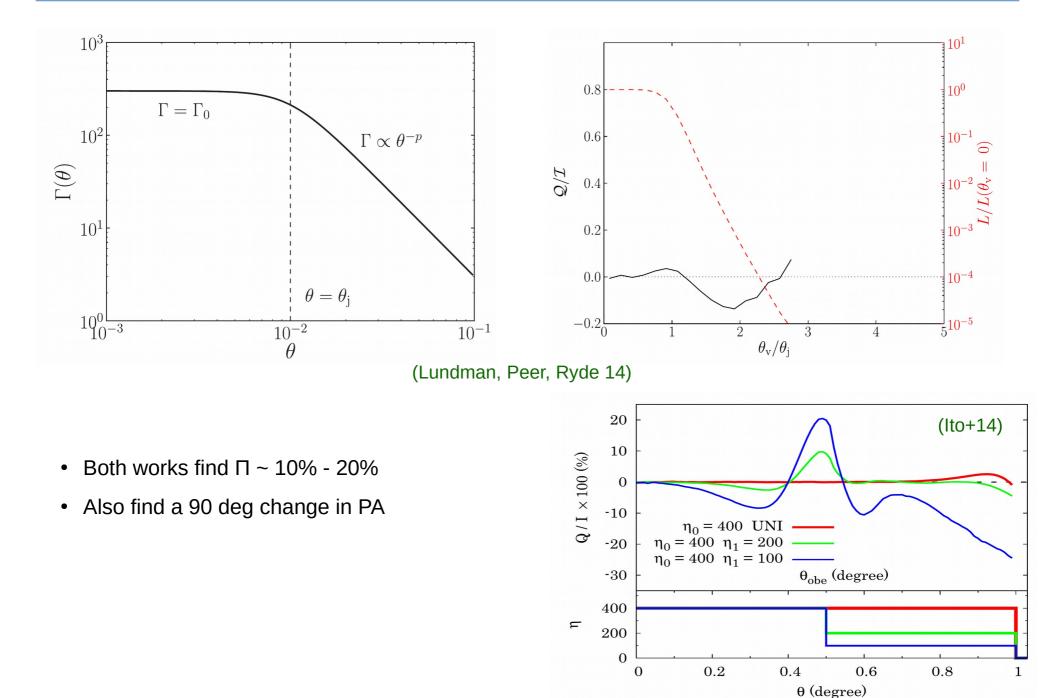
$$I'(r_{\rm ph},\mu)$$
 and $Q'(r_{\rm rph},\mu)$ $1 = \tau_T(r_{\rm ph}) = \int_{r_{\rm ph}}^{\infty} n'_e(r)\sigma_T\Gamma(1-\beta)dr$

• From the comoving quantities, we calculate the total and polarized flux:

$$\Pi = \frac{Q}{I} = \frac{\int \delta_D^4 Q'(r_{\rm ph}, \mu) dS_{\perp}}{\int \delta_D^4 I'(r_{\rm ph}, \mu) dS_{\perp}} \qquad \qquad dS_{\perp} = \text{ differential area on the plane of the sky}$$



Comparison with MC simulation results



Compton drag - Polarization

 Cold electrons in the comoving frame moving at relativistic speeds with the bulk flow in the lab frame upscatter ambient soft seed photons. (Begelman & Sikora 87; Zdziarski+91; Shemi 94; Lazzati+00; Ghisellini+00)

 $E_{\rm scatt} \sim \Gamma^2 E_{\rm seed}$

• Source of soft seed photons can be the radiation field from the exploding star in a long GRB or radiation from the walls of the funnel in which the relativistic jet propagates.

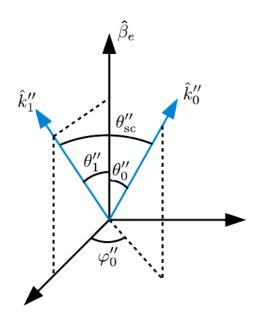
Compton drag - Polarization

 Cold electrons in the comoving frame moving at relativistic speeds with the bulk flow in the lab frame upscatter ambient soft seed photons. (Begelman & Sikora 87; Zdziarski+91; Shemi 94; Lazzati+00; Ghisellini+00)

 $E_{\rm scatt} \sim \Gamma^2 E_{\rm seed}$

• Source of soft seed photons can be the radiation field from the exploding star in a long GRB or radiation from the walls of the funnel in which the relativistic jet propagates.

Polarized emission from inverse Compton scattering by cold relativistic electrons



• The degree of polarization of the scattered photon is:

$$\Pi_{\max} = \frac{1 - \cos^2 \theta_{\rm sc}^{\prime\prime}}{1 + \cos^2 \theta_{\rm sc}^{\prime\prime}}$$

- In comparison to synchrotron emission, $~0 \leq \Pi_{\max} \leq 1$

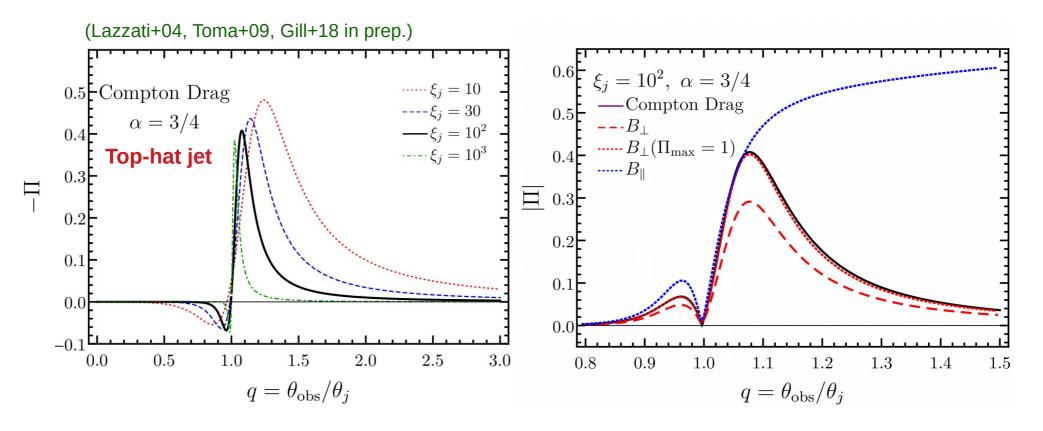
Compton drag - Polarization

 Cold electrons in the comoving frame moving at relativistic speeds with the bulk flow in the lab frame upscatter ambient soft seed photons. (Begelman & Sikora 87; Zdziarski+91; Shemi 94; Lazzati+00; Ghisellini+00)

 $E_{\rm scatt} \sim \Gamma^2 E_{\rm seed}$

• Source of soft seed photons can be the radiation field from the exploding star in a long GRB or radiation from the walls of the funnel in which the relativistic jet propagates.

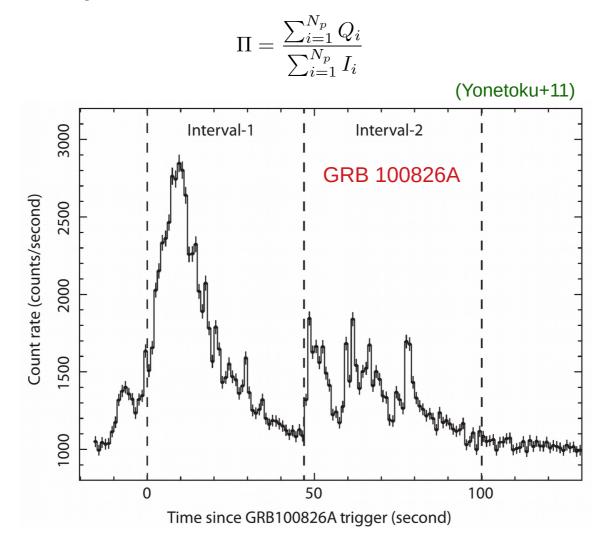
Polarized emission from inverse Compton scattering by cold relativistic electrons



Integration over multiple pulses

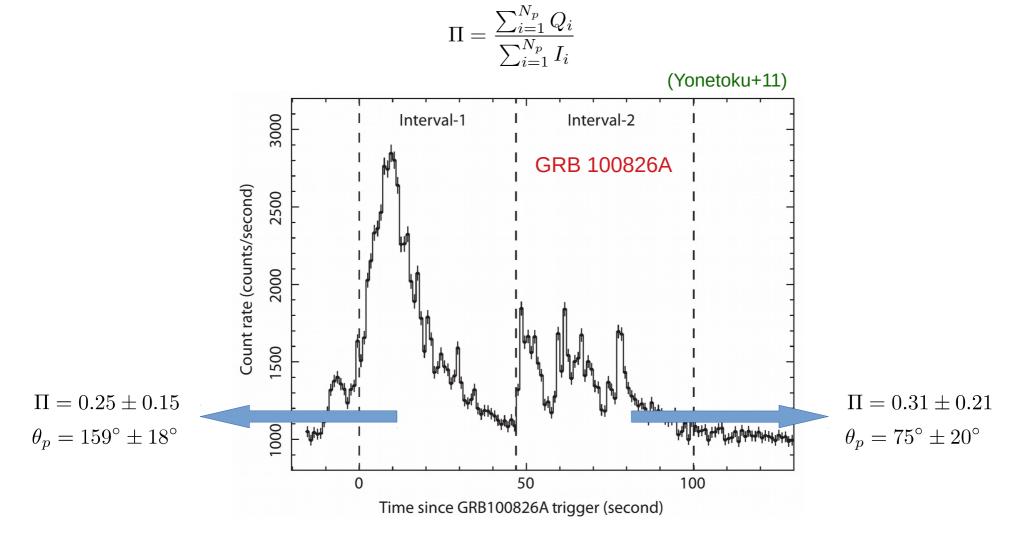
Contribution of multiple pulses to an emission episode

- GRB emission is highly variable and multiple pulses contribute to each emission episode.
- The degree of polarization can vary from pulse to pulse, where the net polarization is obtained from the following for N_p number of pulses



Contribution of multiple pulses to an emission episode

- GRB emission is highly variable and multiple pulses contribute to each emission episode.
- The degree of polarization can vary from pulse to pulse, where the net polarization is obtained from the following for N_p number of pulses

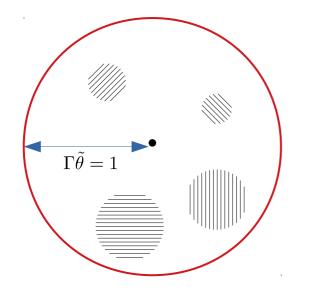


Contribution of multiple pulses to an emission episode

- GRB emission is highly variable and multiple pulses contribute to each emission episode.
- The degree of polarization can vary from pulse to pulse, where the net polarization is obtained from the following for N_p number of pulses

$$\Pi = \frac{\sum_{i=1}^{N_p} Q_i}{\sum_{i=1}^{N_p} I_i}$$

Synchrotron emission from multiple incoherent patches



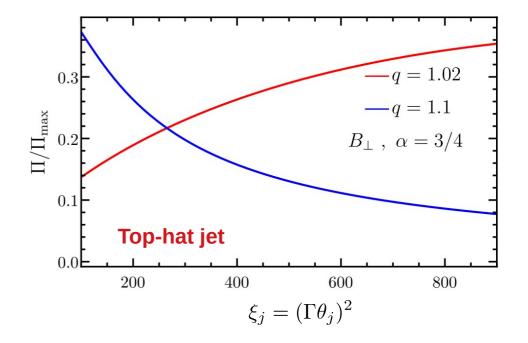
- Consider emission from multiple patches with magnetic field coherence length as large as the size of the patch
- The net polarization will be reduced to (Gruzinov & Waxman 03 – showed for afterglow polarization)

$$\Pi \sim \frac{\Pi_{\max}}{\sqrt{N_p}}$$

• Also, the PA will fluctuate from pulse to pulse

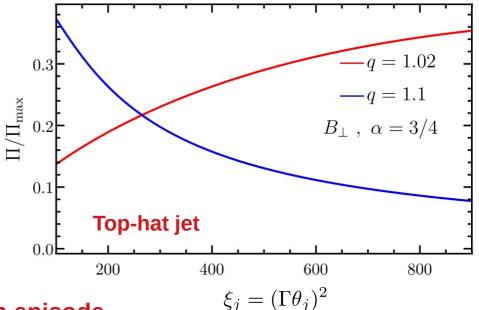
Variation of Γ and/or θ_i over multiple pulses

- It is possible that Γ and/or θ_j fluctuates between multiple pulses.
- This would effectively change ξ_j , which can reduce the net polarization upon integration over multiple pulses due to cancellation.
- This, however, requires a special LOS for a top-hat jet geometry.



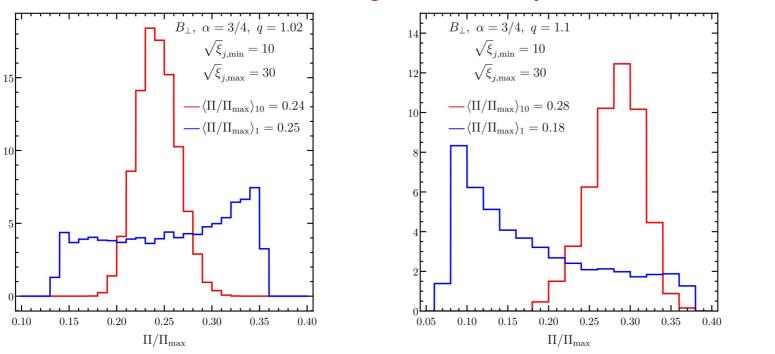
Variation of Γ and/or θ_i over multiple pulses

- It is possible that Γ and/or θ_j fluctuates between multiple pulses.
- This would effectively change ξ_j , which can reduce the net polarization upon integration over multiple pulses due to cancellation.
- This, however, requires a special LOS for a top-hat jet geometry.



(Gill+18, in prep.)

MC simulations of a single emission episode



Monte Carlo simulations of a large sample of GRBs

Monte Carlo simulations of a large sample of GRBs

- To determine the most likely level of linear polarization from different radiation processes.
- Take into account different jet structures and fluence suppression for offaxis observers.
- Integrate over multiple pulses in an emission episode with different pulses having different ξ_i

Distribution of ξ_i and q

Three basic quantities can affect Π

1) For a fixed $\theta_{\{j,c\}}$, variations in Γ can change

$$\sqrt{\xi}_{\{j,c\}} = \Gamma \theta_{\{j,c\}}$$

• We consider three distributions:

$$P(\sqrt{\xi}_j) = (\sqrt{\xi}_{j,\max} - \sqrt{\xi}_{j,\min})^{-1}$$

- Also uniform in $\ln \sqrt{\xi_j}$ and a log-normal distribution.

Distribution of ξ_i and q

Three basic quantities can affect Π

1) For a fixed $\theta_{\{i,c\}}$, variations in Γ can change

 $\sqrt{\xi}_{\{j,c\}} = \Gamma \theta_{\{j,c\}}$

- We consider three distributions:
 - $P(\sqrt{\xi}_j) = (\sqrt{\xi}_{j,\max} \sqrt{\xi}_{j,\min})^{-1}$
 - Also uniform in $\ln \sqrt{\xi}_j$ and a log-normal distribution.
- 2) Distribution of viewing angle, which follows that of the solid angle:

$$P(\theta_{\rm obs}) = \sin \theta_{\rm obs}$$
$$\Rightarrow P(q) = \theta_j P(\theta_{\rm obs}) \propto q$$

Distribution of ξ_i and q

Three basic quantities can affect Π

1) For a fixed $\theta_{\{i,c\}}$, variations in Γ can change

 $\sqrt{\xi}_{\{j,c\}} = \Gamma \theta_{\{j,c\}}$

- We consider three distributions:
 - $P(\sqrt{\xi}_j) = (\sqrt{\xi}_{j,\max} \sqrt{\xi}_{j,\min})^{-1}$
 - Also uniform in $\ln \sqrt{\xi}_j$ and a log-normal distribution.
- 2) Distribution of viewing angle, which follows that of the solid angle:

$$P(\theta_{\rm obs}) = \sin \theta_{\rm obs}$$
$$\Rightarrow P(q) = \theta_j P(\theta_{\rm obs}) \propto q$$

3) Distribution of fluence marginalized over the dist. of $\xi_{i} :$

$$\bar{f}_{\rm iso}(q) = \int_{\xi_{j,\rm min}}^{\xi_{j,\rm max}} \tilde{f}_{\rm iso}(q,\xi_j) P(\xi_j) d\xi_j$$

Distribution of ξ_i and q

Three basic quantities can affect **Π**

1) For a fixed $\theta_{\{i,c\}}$, variations in Γ can change

 $\sqrt{\xi}_{\{j,c\}} = \Gamma \theta_{\{j,c\}}$

• We consider three distributions:

$$P(\sqrt{\xi}_j) = (\sqrt{\xi}_{j,\max} - \sqrt{\xi}_{j,\min})^{-1}$$

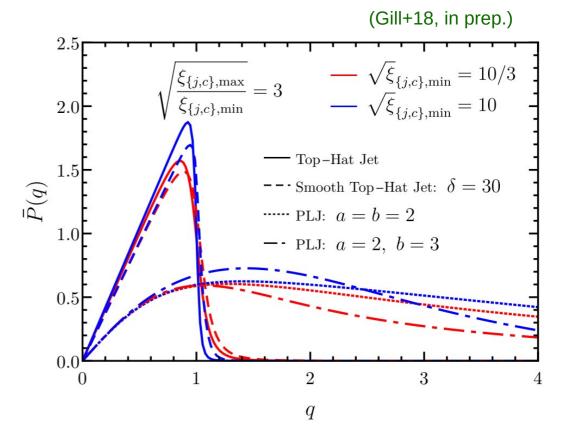
- Also uniform in $\ln \sqrt{\xi_j}$ and a log-normal distribution.
- 2) Distribution of viewing angle, which follows that of the solid angle:

$$P(\theta_{\rm obs}) = \sin \theta_{\rm obs}$$

 $\Rightarrow P(q) = \theta_j P(\theta_{\rm obs}) \propto q$

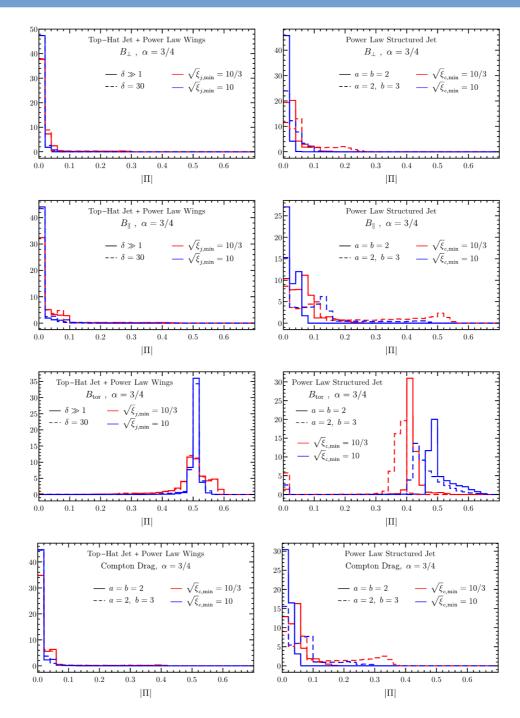
3) Distribution of fluence marginalized over the dist. of $\xi_{i} :$

$$\bar{f}_{\rm iso}(q) = \int_{\xi_{j,\rm min}}^{\xi_{j,\rm max}} \tilde{f}_{\rm iso}(q,\xi_j) P(\xi_j) d\xi_j$$



Results from Monte Carlo modeling

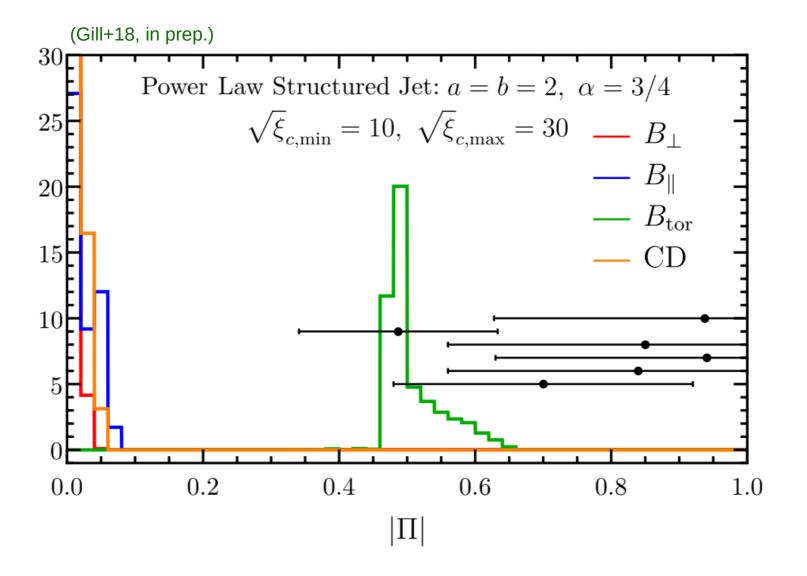
(Gill+18, in prep.)



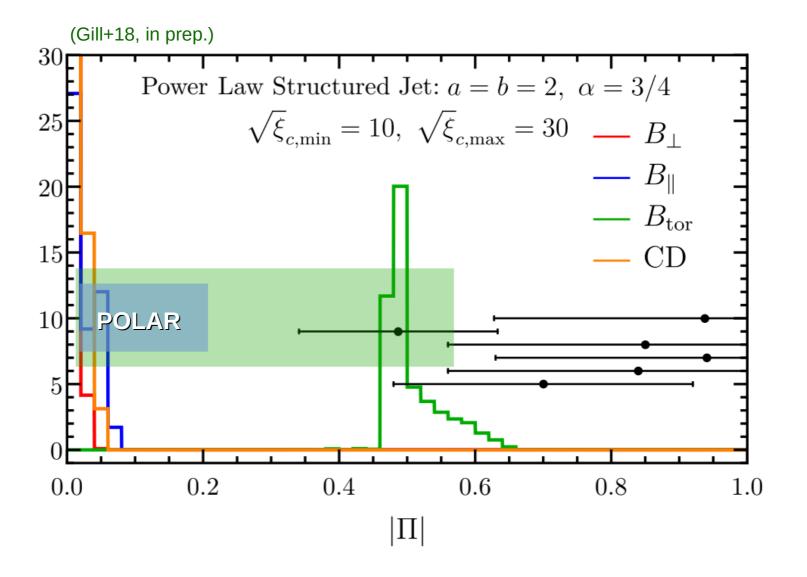
Observations of polarized prompt emission

GRB	Π (%)	PA (°)	$\sigma_{\rm det}~(\Pi > 0\%)$	Instrument	Ref.
021206	80 ± 20	-	> 5.7	RHESSId	Coburn & Boggs (2003)
	0		-		Rutledge & Fox (2004)
	41^{+57}_{-44}		-		Wigger et al. (2004)
041219A	98 ± 33		~ 2.3	INTEGRAL-SPI ^e	Kalemci et al. (2007)
	63^{+31a}_{-30}	70^{+14}_{-11}	~ 2		McGlynn et al. (2007)
	43 ± 25^{b}	38 ± 16	< 2	INTEGRAL-IBIS	Götz et al. (2009)
100826A	27 ± 11^c	159 ± 18 , 75 ± 20	2.9	IKAROS-GAP	Yonetoku et al. (2011b)
110301A	70 ± 22	73 ± 11	3.7	IKAROS-GAP	Yonetoku et al. (2012)
110721A	84^{+16}_{-28}	160 ± 11	3.3	IKAROS-GAP	Yonetoku et al. (2012)
160106A	68.5 ± 24	-22.5 ± 12	< 2	AstroSat-CZTI	Chattopadhyay et al. (2017)
160131A	94 ± 31	41.2 ± 5.0	≥ 3	AstroSat-CZTI	Chattopadhyay et al. (2017)
160325A	58.75 ± 23.5	10.9 ± 17	< 2	AstroSat-CZTI	Chattopadhyay et al. (2017)
160509A	96 ± 40	-28.6 ± 11.0	~ 2.5	AstroSat-CZTI	Chattopadhyay et al. (2017)
160802A	85 ± 29	-36.1 ± 4.6	≥ 3	AstroSat-CZTI	Chattopadhyay et al. (2017)
160821A	48.7 ± 14.6	-34.0 ± 5.0	≥ 3	AstroSat-CZTI	Chattopadhyay et al. (2017)
160910A	93.7 ± 30.92	43.5 ± 4.0	≥ 3	AstroSat-CZTI	Chattopadhyay et al. (2017)
160802A	85 ± 29	~ -32	~ 3(?)	AstroSat-CZTI	Chand et al. (2018a)
171010A	~ 40	variable (?)	(?)	AstroSat-CZTI	Chand et al. (2018b)

Comparison with current measurements



Comparison with current measurements



Conclusions

- Synchrotron emission from B_{\perp} and B_{\parallel} , and from Compton drag, can yield high polarization but require a special viewing angle in the case of a top-hat jet.
 - For the case of B_{\perp} : $25\% \lesssim \Pi \lesssim 45\%$
- Non-dissipative photospheric emission requires large gradients in $\Gamma(\theta)$ to produce detectable polarization.
 - We find that $~\Pi \lesssim 15\%$
- Only synchrotron emission from a large scale ordered field (like a toroidal field) can yield high levels of polarization.
 - Can get polarization as high as $50\% \lesssim \Pi \lesssim 65\%$
 - This model will also be favoured if most GRBs have $\Pi\gtrsim 20\%$
- If only ~10% of GRBs have $\Pi \gtrsim 20\%$ and the rest are weakly polarized then:
 - Large scale ordered fields (e.g. toroidal field) will be disfavored
 - It would mean that the structure of the jet is very close to that of a top-hat jet.

Conclusions

- Synchrotron emission from B_{\perp} and B_{\parallel} , and from Compton drag, can yield high polarization but require a special viewing angle in the case of a top-hat jet.
 - For the case of B_{\perp} : $25\% \lesssim \Pi \lesssim 45\%$
- Non-dissipative photospheric emission requires large gradients in $\Gamma(\theta)$ to produce detectable polarization.
 - We find that $\Pi \lesssim 15\%$
- Only synchrotron emission from a large scale ordered field (like a toroidal field) can yield high levels of polarization.
 - Can get polarization as high as $50\% \lesssim \Pi \lesssim 65\%$
 - This model will also be favoured if most GRBs have $\Pi\gtrsim 20\%$
- If only ~10% of GRBs have $\Pi\gtrsim 20\%$ and the rest are weakly polarized then:
 - Large scale ordered fields (e.g. toroidal field) will be disfavored
 - It would mean that the structure of the jet is very close to that of a top-hat jet.

Thanks!