Probing the GRB prompt emission mechanism, magnetic field geometry, and jet structure with linear polarization

Ramandeep Gill

The Open University of Israel Institute for Theoretical Physics, Frankfurt

Collaborators: Jonathan Granot & Pawan Kumar

Nov. 27, 2018 Shedding new light on GRBs with polarization data Geneva

Outline of the talk

● **Structured jets**

- Dependence of fluence on the viewing angle
- Limitation to small viewing angles due to compactness
- **Polarization from different radiation processes: Top-hat jet Vs structured jet**
	- Synchrotron emission
		- Temporal evolution
		- Different B-field configurations
	- Non-dissipative photospheric emission
	- Compton drag
- **Change in net polararization when integrating over multiple pulses**
- **Monte-Carlo simulation of polarized emission from a large sample of GRBs**
	- What can we say about the B-field structure?
	- Can we infer anything about the jet structure?

Structured jets

A uniform jet with a sharp edge

A uniform jet with a sharp edge

$$
L'_{\nu'} \propto \Theta^{-a}
$$
 $\Gamma(\theta) \propto \Theta^{-b}$ $\Theta = \sqrt{1 + \left(\frac{\theta}{\theta_c}\right)^2}$

Off-axis to on-axis fluence ratio

$$
E_{\gamma,\mathrm{iso}} = \frac{4\pi d_L^2}{(1+z)} S_{\gamma}
$$

$$
S_{\gamma} = \int dt_{\mathrm{obs}} \int_{\nu_1}^{\nu_2} d\nu F_{\nu}(t_{\mathrm{obs}})
$$

- Fluence is suppressed for off-axis observers, which makes it hard to detect distant off-axis GRBs. (Granot+02; Yamazaki+03; Eichler & Levinson 04; Salafia+15)
- Structured jets are visible over much larger angular scales than top-hat jets.

• Pair-production and its effect on the spectrum **Compactness constraints** becomes important when the compactness of the flow is high.

$$
\ell_\gamma'=\sigma_T\frac{U_\gamma'}{m_ec^2}\frac{R}{\Gamma}=f_{\gamma\gamma}^{-1}\tau_T
$$

• High Thomson scattering optical depth due to pairs can suppress γ-ray emission

$$
\tau_T \approx \epsilon_\gamma f_{\gamma\gamma} \frac{3\sigma_T}{8m_ec^4} \frac{L_k(\theta)}{\Gamma^5 t_{v,z}}
$$

Polarization from different radiation processes

Synchrotron emission

- Relativistic particles (e^- or e^{\pm}) gyrate around magnetic field lines and emit synchrotron photons.
- Energy distribution of particles follow a power law: $n_e(\gamma_e) \propto \gamma_e^{-p}$ $\gamma_m < \gamma_e < \gamma_M$

Synchrotron emission – random B-field

Abberration of light in a relativistic outflow

Synchrotron emission – random B-field

Abberration of light in a relativistic outflow

(Granot & Ramirez-Ruiz 2011)

• Greater degree of symmetry in the polarization vectors, when observed over the entire GRB image, leads to smaller degree of **net** polarization

Random B-field

Synchrotron emission – random B-field

Abberration of light in a relativistic outflow

(Granot & Ramirez-Ruiz 2011)

- Greater degree of symmetry in the polarization vectors, when observed over the entire GRB image, leads to smaller degree of **net** polarization
- One way to **break the symmetry** is by having the line-of-sight close to the jet edge (in a tophat jet), which will not cancel all the polarization. (**Waxman 03**)

Random B-field

Synchrotron emission – B-field structure

• Large scale B-field breaks the symmetry and yields higher levels of polarization.

(Granot & Ramirez-Ruiz 11; Gill+18, in prep.)

- Random B-field in the plane transverse to the radial vector
- We also consider B-field parallel to radial vector B_{\parallel}

Random B-field (B_{\perp}) **Ordered B-field Toroidal B-field** (B_{tor})

Temporal evolution of polarization over a single pulse

● Consider an **ordered B-field** in the entire observed region and a **relativistic spherical shell** emitting between radii

> $r=r_0$ and $r = r_0 + \Delta r$

• Emission arrives over two timescales:

Radial time:

 $\frac{t_{\text{obs,r}}}{(1+z)} = \frac{\Delta r}{2\Gamma^2 c}$

Angular time:

 $\frac{t_{\text{obs},\theta}}{(1+z)} = \frac{r_0}{2\Gamma^2c}$

Temporal evolution of polarization over a single pulse

Integration over the entire pulse

- **Simplifying assumption:** Synchrotron emissivity and properties of the emission region do not vary with radius
- This is equivalent to delta-function emission in radius, and the total polarization is obtained by integrating over large angular scales around the LOS:

$$
\tilde{\xi}_{\max}=(\Gamma\tilde{\theta}_{\max})^2>1
$$

Consider an ordered B-field in the entire observed region and a **relativistic spherical shell** emitting between radii

> and $r=r_0$ $r = r_0 + \Delta r$

Emission arrives over two timescales:

Synchrotron emission – Polarization

Top-hat jet

(**Granot 03; Granot & Taylor 05;** Gill+18, in prep.)

Synchrotron emission – Polarization

Top-hat jet

(**Granot 03; Granot & Taylor 05;** Gill+18, in prep.)

Structured jet

Photospheric emission

- Close to the central engine, the flow is launched highly optically thick to pair-production where it is thermalized via Comptonization.
- Adiabatically cooled thermal radiation is released at the photosphere. (**Goodman 86, Paczynski 86**)
- Dissipation below and above the photosphere produces the non-thermal GRB spectrum. (Thompson 94; Eichler & Levinson 00; Meszaros & Rees 05; Lazzati+09; Peer & Ryde 11; Begue+13; Thompson & Gill 14; Gill & Thompson 14; Vurm & Beloborodov 16)

Non-dissipative outflow

Heated outflow

• Spectrum shown in the comoving frame, with different levels of heating.

Non-dissipative photospheric emission - Polarization

● We solve the equations of radiative transfer for an **ultra-relativistic spherical flow** and calculate the Stoke parameters in the comoving frame (see next talk by A. Beloborodov):

$$
I'(r_{\rm ph}, \mu) \quad \text{and} \quad Q'(r_{\rm rph}, \mu) \qquad \qquad 1 = \tau_T(r_{\rm ph}) = \int_{r_{\rm ph}}^{\infty} n_e'(r) \sigma_T \Gamma(1 - \beta) dr
$$

• From the comoving quantities, we calculate the total and polarized flux:

$$
\Pi = \frac{Q}{I} = \frac{\int \delta_D^4 Q'(r_{\rm ph}, \mu) dS_{\perp}}{\int \delta_D^4 I'(r_{\rm ph}, \mu) dS_{\perp}}
$$

 dS_{\perp} = differential area on the plane of the
sky

Comparison with MC simulation results

Compton drag - Polarization

• Cold electrons in the comoving frame moving at relativistic speeds with the bulk flow in the lab frame upscatter ambient soft seed photons. (**Begelman & Sikora 87**; Zdziarski+91; Shemi 94; Lazzati+00; Ghisellini+00)

 $E_{\rm scatt} \sim \Gamma^2 E_{\rm seed}$

• Source of soft seed photons can be the radiation field from the exploding star in a long GRB or radiation from the walls of the funnel in which the relativistic jet propagates.

Compton drag - Polarization

• Cold electrons in the comoving frame moving at relativistic speeds with the bulk flow in the lab frame upscatter ambient soft seed photons. (**Begelman & Sikora 87**; Zdziarski+91; Shemi 94; Lazzati+00; Ghisellini+00)

 $E_{\text{scatt}} \sim \Gamma^2 E_{\text{seed}}$

• Source of soft seed photons can be the radiation field from the exploding star in a long GRB or radiation from the walls of the funnel in which the relativistic jet propagates.

Polarized emission from inverse Compton scattering by cold relativistic electrons

• The degree of polarization of the scattered photon is:

$$
\Pi_{\text{max}} = \frac{1 - \cos^2 \theta''_{\text{sc}}}{1 + \cos^2 \theta''_{\text{sc}}}
$$

• In comparison to synchrotron emission, $0 \leq \Pi_{\text{max}} \leq 1$

Compton drag - Polarization

• Cold electrons in the comoving frame moving at relativistic speeds with the bulk flow in the lab frame upscatter ambient soft seed photons. (**Begelman & Sikora 87**; Zdziarski+91; Shemi 94; Lazzati+00; Ghisellini+00)

 $E_{\rm scatt} \sim \Gamma^2 E_{\rm seed}$

Source of soft seed photons can be the radiation field from the exploding star in a long GRB or radiation from the walls of the funnel in which the relativistic jet propagates.

Polarized emission from inverse Compton scattering by cold relativistic electrons

Integration over multiple pulses

Contribution of multiple pulses to an emission episode

- GRB emission is highly variable and multiple pulses contribute to each emission episode.
- The degree of polarization can vary from pulse to pulse, where the net polarization is obtained from the following for N_p number of pulses

Contribution of multiple pulses to an emission episode

- GRB emission is highly variable and multiple pulses contribute to each emission episode.
- The degree of polarization can vary from pulse to pulse, where the net polarization is obtained from the following for N_p number of pulses

Contribution of multiple pulses to an emission episode

- GRB emission is highly variable and multiple pulses contribute to each emission episode.
- The degree of polarization can vary from pulse to pulse, where the net polarization is obtained from the following for N_p number of pulses

$$
\Pi = \frac{\sum_{i=1}^{N_p} Q_i}{\sum_{i=1}^{N_p} I_i}
$$

Synchrotron emission from multiple incoherent patches

- Consider emission from multiple patches with magnetic field coherence length as large as the size of the patch
- The net polarization will be reduced to (Gruzinov & Waxman 03 – showed for afterglow polarization)

$$
\Pi \sim \frac{\Pi_{\text{max}}}{\sqrt{N}_p}
$$

Also, the PA will fluctuate from pulse to pulse

Variation of Γ and/or θ_j over multiple pulses

- \bullet It is possible that Γ and/or θ_{j} fluctuates between multiple pulses.
- \bullet This would effectively change $\xi_{\sf j}$, which can reduce the net polarization upon integration over multiple pulses due to cancellation.
- This, however, requires a special LOS for a top-hat jet geometry. **Top-hat jet**

Variation of Γ and/or θ_j over multiple pulses

- \bullet It is possible that Γ and/or θ_{j} fluctuates between multiple pulses.
- \bullet This would effectively change $\xi_{\sf j}$, which can reduce the net polarization upon integration over multiple pulses due to cancellation.
- This, however, requires a special LOS for a top-hat jet geometry. **Top-hat jet**

(Gill+18, in prep.)

MC simulations of a single emission episode

Monte Carlo simulations of a large sample of GRBs

Monte Carlo simulations of a large sample of GRBs

- To determine the most likely level of linear polarization from different radiation processes.
- Take into account different jet structures and fluence suppression for offaxis observers.
- Integrate over multiple pulses in an emission episode with different pulses having different $ξ_i$

Three basic quantities can affect Π

1) For a fixed $θ_{\text{f}_i, c}$, variations in Γ can change

$$
\sqrt{\xi}_{\{j,c\}}=\Gamma \theta_{\{j,c\}}
$$

• We consider three distributions:

$$
P(\sqrt{\xi}_j) = (\sqrt{\xi}_{j,\text{max}} - \sqrt{\xi}_{j,\text{min}})^{-1}
$$

• Also uniform in $\ln\sqrt{\xi_j}$ and a log-normal distribution.

Three basic quantities can affect Π

1) For a fixed $θ_{f_i,c}$, variations in Γ can change

$$
\sqrt{\xi}_{\{j,c\}}=\Gamma \theta_{\{j,c\}}
$$

- We consider three distributions:
	- $P(\sqrt{\xi}_j) = (\sqrt{\xi}_{j,\text{max}} \sqrt{\xi}_{j,\text{min}})^{-1}$
	- Also uniform in $\ln\sqrt{\xi_j}$ and a log-normal distribution.
- 2) Distribution of viewing angle, which follows that of the solid angle:

$$
P(\theta_{\rm obs}) = \sin \theta_{\rm obs}
$$

$$
\Rightarrow P(q) = \theta_j P(\theta_{\rm obs}) \propto q
$$

Three basic quantities can affect Π

1) For a fixed $θ_{f_i,c}$, variations in Γ can change

$$
\sqrt{\xi}_{\{j,c\}}=\Gamma \theta_{\{j,c\}}
$$

- We consider three distributions:
	- $P(\sqrt{\xi}_j) = (\sqrt{\xi}_{j,\text{max}} \sqrt{\xi}_{j,\text{min}})^{-1}$
	- Also uniform in $\ln\sqrt{\xi_j}$ and a log-normal distribution.
- 2) Distribution of viewing angle, which follows that of the solid angle:

 $P(\theta_{\rm obs}) = \sin \theta_{\rm obs}$ $\Rightarrow P(q) = \theta_i P(\theta_{\rm obs}) \propto q$

3) Distribution of fluence marginalized over the dist. of ξ_j:

$$
\bar{f}_{\rm iso}(q) = \int_{\xi_{j,\rm min}}^{\xi_{j,\rm max}} \tilde{f}_{\rm iso}(q,\xi_j) P(\xi_j) d\xi_j
$$

Three basic quantities can affect Π

1) For a fixed $θ_{f_i, c}$, variations in Γ can change

 $\sqrt{\xi_{\{j,c\}}} = \Gamma \theta_{\{j,c\}}$

• We consider three distributions:

$$
P(\sqrt{\xi}_j) = (\sqrt{\xi}_{j,\mathrm{max}} - \sqrt{\xi}_{j,\mathrm{min}})^{-1}
$$

- Also uniform in $\ln\sqrt{\xi_j}$ and a log-normal distribution.
- 2) Distribution of viewing angle, which follows that of the solid angle:

3) Distribution of fluence marginalized over the dist. of ξ_j:

$$
\bar{f}_{\text{iso}}(q) = \int_{\xi_{j,\text{min}}}^{\xi_{j,\text{max}}} \tilde{f}_{\text{iso}}(q,\xi_j) P(\xi_j) d\xi_j
$$

Results from Monte Carlo modeling

(Gill+18, in prep.)

Observations of polarized prompt emission

Comparison with current measurements

Comparison with current measurements

Conclusions

- Synchrotron emission from B_{\perp} and B_{\parallel} , and from Compton drag, can yield high polarization but require a special viewing angle in the case of a top-hat jet.
	- For the case of B_{\perp} : $25\% \lesssim \Pi \lesssim 45\%$
- Non-dissipative photospheric emission requires large gradients in $\Gamma(\theta)$ to produce detectable polarization.
	- We find that $\Pi \leq 15\%$
- Only synchrotron emission from a large scale ordered field (like a toroidal field) can yield high levels of polarization.
	- Can get polarization as high as $50\% \lesssim \Pi \lesssim 65\%$
	- This model will also be favoured if most GRBs have $\Pi \gtrsim 20\%$
- If only ~10% of GRBs have $\Pi \gtrsim 20\%$ and the rest are weakly polarized then:
	- Large scale ordered fields (e.g. toroidal field) will be disfavored
	- It would mean that the structure of the jet is very close to that of a top-hat jet.

Conclusions

- Synchrotron emission from B_{\perp} and B_{\parallel} , and from Compton drag, can yield high polarization but require a special viewing angle in the case of a top-hat jet.
	- For the case of B_{\perp} : $25\% \lesssim \Pi \lesssim 45\%$
- Non-dissipative photospheric emission requires large gradients in $\Gamma(\theta)$ to produce detectable polarization.
	- We find that $\Pi \leq 15\%$
- Only synchrotron emission from a large scale ordered field (like a toroidal field) can yield high levels of polarization.
	- Can get polarization as high as $50\% \lesssim \Pi \lesssim 65\%$
	- This model will also be favoured if most GRBs have $\Pi \gtrsim 20\%$
- If only ~10% of GRBs have $\Pi \gtrsim 20\%$ and the rest are weakly polarized then:
	- Large scale ordered fields (e.g. toroidal field) will be disfavored
	- It would mean that the structure of the jet is very close to that of a top-hat jet.

Thanks!