Crystal array of CALO

Xin Liu 2018-11-06

The 7th HERD workshop, CERN

HERD payload

Calorimeter specifications

layers with 21*21 crysta layers with 21*19 cr layers with 21*17 crysta layers with 21*15 crystals layers with 21*13 crystals layers with 21*11 crystals layers with 21*9 crystals

ltem	Value	Note
Type of crystal	LYSO	
Crystal dimension	3cm*3cm *3cm	
Number of crystals	~7500	
Radiation Length	55	~ 21 LYSO crystals
Nuclear Interaction Length	3	
Fiber readout	3 WLSF/cry stal	Low range, high range & trigger
Energy resolution(e)	1%@200 GeV	
Energy resolution(p)	20%@100 GeV-PeV	
e/p discrimination	~10 ⁻⁶	3-d crystal array

CALO-LYSO array

- ~7500 LYSO/WLSF units
- LYSO: Convert energy deposition of incident high energy particles
- WLSF: Read out crystal signals

Encapsulation of WLSF with optical cement

LYSO/WLSF inserted in CFRP

WLSF coupled to LYSO and covered by reflector

Construction of CALO by 21 modules

Light-collection optimization

 The intensity output of LYSO and LYSO+WLSF are irrelevant

Light-collection optimization

• The output of LYSO highly relies on surface grinding method.

readout by PD

Light-collection optimization

LYSO cube polished on all six sides

Titanium dioxide (TiO2) coating

LYSO cube grinded on 5 sides and polished on 1 side

LYSO+WLSF irradiated by MXS and readout by PD

Intensity of LYSO+WLSF cell output is increased by ~100%.

ESR film reflector

Wavelength shifting fiber

S type (S) is mechanically stronger . The attenuation length of this type is nearly 10% shorter than standard type.

Fiber polishing before making spirals 3 circles

9 circles

In our test, significant drop of L.O. in S type is found. So number of spiral circles is increased to 9 to guarantee high L.O. in the new prototype. Final decision will be made with further tests and comparison

The uniformity inside LYSO

 The ratio of maximum to minimum output is 1.034:1

From crystal bottom view

LYSO+WLSF irradiated by MXS and readout by PD Irradiated from the bottom of crystal

The uniformity of LYSO+WLSF(1)

- The uniformity of the LYSO+WLSF may be controlled under \pm 15%
- Making WLSF to different circles
- LYSO surface treatment
- The crystal and WLSF can complement each other
- Reduce WLSF wear

New mold for WLSF spirals

LYSO+WLSF irradiated by MXS and readout by PD

The uniformity of LYSO+WLSF(2)

- 2017:strict selection criteria of fiber spirals(500 ps.)
- 2018:no screening, removed damaged fiber(600 ps.)
- Uniformity between crystals can be easily verified by a MXS scanning on the surface of one crystal layer during AIT.

LYSO encapsulation

One cell of LYSO array

One layer of crystals in prototype

- inner layer : 0.065mm
 thickness ESR film and
 0.02mm 3M tape
- outer layer : 0.08mm thickness, BC-642 PTFE Reflector Tape and 0.02mm 3M tape
- Avoid infiltration of Silicone Elastomer which is filled in gaps
- Reduce friction between ESR and LYSO roughed surface.

Fiber tag

- The capillaries with mark are placed on three fibers of a LYSO cell.
- The three fibers are cut into different fixed lengths.
- The fiber can be identified by the mark combined with the lengths

2017 beam test prototype

The capillaries with mark over the fiber13

The crystal array assembly

• All fibers routed below the crystal array

2018 beam test prototype

Hybrid readout with photodiode and WLSFs

- Gap: In layers≤ 4mm;Between layers≤ 8mm;Depth of grid=20mm
- PD may be coupled on one of the lateral sides.
- Hybrid readout of LYSO crystal has been proposed by Oscar. IHEP will help providing ~30 crystals encapsulated with ESR films for the verification of the new method.

2017 CERN SPS beam test

Beam test setup

Energy linearity of electron

Energy resolution of proton, 44%@350GeV

2018 CERN SPS beam test

- ✓ Verify the energy resolution of proton
- ✓ Verify effect of lightcollection optimization
- Verify some technical improvements and schemes about LYSO encapsulation, WLSF coupling, fiber tag, array assembly, etc.

The third CALO prototype

Summary

- Detailed design on crystal encapsulation and fiber routing is undergoing and being verified in prototype.
- ✓ Various test method during development and AIT has been proposed.
- ✓ Verification of fiber routing and labelling will be implemented in the next months on a 1:1 scale prototype.
- ✓ New hybrid readout method is being proposed.