

IsCMOS readout system status

X I 0 P M

X I O P M

X I 0 P

X I O P M

Outline

Performance of IsCMOS camera prototype 2017

Energy Resolutions of electron <u>~1.3%@200GeV</u> by apply a IsCMOS camera on high output channel ;

Performance of IsCMOS Prototype 2017

Defects of 2017 IsCMOS	Effect
Gain unstable under high density illumination	Difficult to calibrate for beam test
Gain vibration caused by HVP ripple	Lower energy resolution
Long afterglow of screen	Pulse pileup
Trigger delay of CMOS	Lower Sensitivity
CMOS noise	Lower dynamic range and poor sensitivity

CMOS image frame transfer error

ш

īΝ

XI'AN INSTITUTE OF OPTICS AND

Lower event detection efficiency

学院西安光学精密机械

PRECISION MECHANICS OF CAS

Frame rate	>500 fps
Dynamic range	Low output channel 50-5e4 P.E., High 4e4-4e7 P.E.
Fiber channel	500ch /camera
Min signal	50 P.E.
Fiber optic tapers	Two stage
Decay of screen	0.1% @ 5ms
Trigger delay of IIT	<1us
sCMOS noise	No comment-mode noise, no drift with frame rate

中国科学院西安光学精密机械研究所 XI'AN INSTITUTE OF OPTICS AND PRECISION MECHANICS OF CAS

IsCMOS Developement

What's new in IsCMOS of 2018

- ✓ Two IsCMOS cameras
- Low noise driver circuit board for sCMOS Chip
- ✓ FPGA program upgrade
- IIT with detached HVP of ultralow ripple noise
- ✓ Optimized fiber optic tapers
- ✓ Optimized CMOS chip cooling system

X I O P M

PRECISION MECHAN

Prograss of sCMOS camera subsystem

In critical parts, ripple smaller than 15uV. Extremely low noise made by:

- Shielded DC-DC circuit to reduce ElectroMagnetic Interference
- Cascade LDO to improve PSRR
- Wider bandwidth in circuit for better frequency response

хI

sCMOS Design: composition of sCMOS Module

 Removed the noise in low frame rate by applied the upgrade sensor Reduced the background noise and got a "slim figure" of baseline

FPGA program upgrade

Original data coming out of the sCMOS is about 65Gbit per second. In the sCMOS module, it have to deal with such numerous data. After the processing logic and circuits, the data reduced to 10Gbit per second. Below is the architecture of the FPGA real time processor.

Fiber optic tapers of 2018

500 channels; 光纤中心距1mm; 丝径0.3mm						
Diameter of front FO taper (mm)	40					
Front taper Ratio of large and small ends	2.95:1					
Diameter of Image intensifier (mm)	40					
Diameter of rear FO taper (mm)	40					
rear taper Ratio of large and small ends	3:1					
Pixels per channel	20*20pixel/ ch					
Pixel size of sCMOS	5.5*5.5 um					

Fiber optic tapers of 2018

Φ40mm image intensifier, 500FPS(maxim 620 lines of sCMOS), 888 fibers can be arranged.

Transmission of FO taper

Series No.	Position1	Position2	Position3	Position4	Position5	Uniformity	LED Power	Trans.
1804161104	2.091	2.095	2.078	2.074	2.076	0.995427	5.933	0.351053
1804161105	1.957	1.968	1.951	1.955	1.962	0.99664	5.933	0.33012
100110101	2 0 2 0	4 000	2 0 2 2	2.047	2 0 2 0	0.000700	E 000	0.044047
1804161101	2.038	1.993	2.033	2.047	2.029	0.989799	5.933	0.341817
1805251101	1.877	1.893	1.889	1.894	1.898	0.995745	5.933	0.318591

科学院西安光学精密机械研究所 山国 XI'AN INSTITUTE OF OPTICS AND PRECISION MECHANICS OF CAS

Imaging testing of FO tapers

Series No.	Front to end spatial R lp/mm	end to front spatialR lp/mm	Front fiber Core um	End fiber core um	F2E ratio
GZ (W) 1804161101	57	57	5.65	1.76	3.2: 1
GZ (W) 1804161102	57	57	5.5	1.9	2.9: 1
GZ (W) 1804161103	57	57	5.4	1.79	3.01: 1
GZ (W) 1804161104	57	57	5.58	1.9	2.93: 1
GZ (W) 1804161105	57	57	5.3	1.75	3.0: 1

中国科学院西安光学精密机械研究所

XI'AN INSTITUTE OF OPTICS AND PRECISION MECHANICS OF CAS

Taper Coupling

High Voltage PSU: MCP gain

Nonuniformity of IsCMOS camera

Nonuniformity:2.1%-5.2%

学院西安光学精密机

PRECISION MECHANICS OF CAS

OPTICS AND

TUTE OF

Overall picture

 Partial magnification picture

Phosphor screen: decay time

95% Energy is concentrated in 100us, and the 840us decay time match with sCMOS frame rate(500fps)

Gated Unite for photocathode

Gated Unite for photocathode

Impedance mismatching

Impedance matching

Dynamic range

Cooling Design

中国科学院西安光学精密机械研究所 XI'AN INSTITUTE OF OPTICS AND PRECISION MECHANICS OF CAS

sCMOS chip temperature

The afterglow of IIT

中国科学院西安光学精密机械研究所 XI'AN INSTITUTE OF OPTICS AND PRECISION MECHANICS OF CAS

The Trigger On delay of sCMOS

The MIP signal response of IsCMOS camera

中国科学院西安光学精密机械研究所 XI'AN INSTITUTE OF OPTICS AND PRECISION MECHANICS OF CAS

Conclusion

We have developed I.I. which satisfies most of our requirements > sensitivity dynamic range improvement trigger off/on delay time Gain stability

光堂牆

PRECISION MECHANICS

OPTICS

中国科学院西安光学精密机械研究所 XI'AN INSTITUTE OF OPTICS AND PRECISION MECHANICS OF CAS