High-energy simulation experience from DAMPE

Andrii Tykhonov University of Geneva

Outline

- DAMPE & Simulation:
 - Cosmic-Ray (CR) proton/ion analyses
 - High-energies (>100 TeV)
 - Cosmic-Ray (CR) electron analysis

The DAMPE detector

DAMPE Software framework

Geometry

- Geometry model in Geant4 is created from the CAD drawings
 - Each CAD geometry element is saved as a tessellated solid in an STL file
 - STL converted to GDML with material assignment using the conversion tool*

* https://github.com/tihonav/cad-to-geant4-converter

(4)

CR proton/ion analyses Simulation challenges

Simulation challenges in CR analysis

Simulation E > 100 TeV/nucl

Baseline simulation: Geant4

6000

High energy simulation experience from DAMPE

Baseline simulation: Geant4

 Geant4 hadronic simulation shows very good agreement with beamtest data, at PS—SF[^]

FLUKA

• Alternative FLUKA simulation of DAMPE is implemented in parallel with the baseline Geant4 simulation

Geant4—CRMC interface

- Running Geant4 simulations at > 100 TeV energies? \rightarrow CRMC interface:
 - Allows to run simulations with using the DPMJET, EPOS and other models in Geant4:

Geant4—CRMC interface

If E < Ether
 use FTFP (GEANT4)
else
 use CRMC (EPOS/DPMJET/..)</pre>

FLUKA & Geant4—CRMC

 Geant4 and Fluka show discrepancy at low (<100 GeV) and high (>10 TeV) energies

FLUKA & Geant4-CRMC

- Geometrical acceptance is consistent between FLUKA and G4
- The difference observed for HE trigger efficiency at low energies (<100 GeV)

Hadronic cross-sections uncertainties

 Uncertainty of hadronic cross-sections in MC simulations → can be tested by varying cross-sections at Geant4 level:

```
# Modify elastic/inelastic cross-section by 10% down
SimAlg.Set("ModifyInelasticCrossSection", "0.9")
# Set minimal particle energy for which the cross-section is modified
SimAlg.Set("ModifyCrossSectionMinTotalEnergyGeV", "0")
```

CR electron analysis Simulation challenges

- Electron/proton discrimination in DAMPE is based on the shoer-shape variables:
 - Sum of shower RMS in all 14 layers of the BGO calorimeter (RMS_i)
 - Fraction of energy in the last BGO layer (\mathcal{F}_{last})

Andrii Tykhonov (UXTRIity of Geneva)

21

High energy simulation experience from DAMPE

 At >5 TeV energies Deep Learning or similar approaches appear promising for e/p discrimination → represents challenge for the simulation.

- e/p classifier optimised with the simulation → relies significantly on the MC precision
- Works well with MC does it work with the real data? How to estimate background?

- e/p classifier optimised with the simulation → relies significantly on the MC precision
- Works well with MC does it work with the real data? How to estimate background?

 Excluding some non well-modelled variables from DNN allowed to maintain good data-MC agreement of the classifier score, while keeping (almost) the same DNN performance.

Conclusions

- Geant4 DAMPE simulation proven to work well: good agreement with beam-test and orbit data.
- Solutions for performing simulations above 100 TeV:
 - FLUKA
 - GEANT4 + CRMC
- Simulation in CR proton/ion analysis:
 - Energy unfolding
 - Trigger efficiency
 - Charge simulation
 - Hadronic cross-sections
- Good quality of simulation is important for CR electron analysis and e/p discrimination optimisation.

Conclusions

- Geant4 DAMPE simulation proven to work well: good agreement with beam-test and orbit data.
- Solutions for performing simulations above 100 TeV:
 - FLUKA
 - GEANT4 + CRMC
- Simulation in CR proton/ion analysis:
 - Energy unfolding
 - Trigger efficiency
 - Charge simulation
 - Hadronic cross-sections
- Good quality of simulation is important for CR electron analysis and e/p discrimination optimisation.

