

Beam-Beam DA Simulations for HL-LHC

N. Karastathis, X. Buffat, S. Fartoukh, R.de Maria, Y. Papaphilippou

on behalf of the HiLumi LHC WP2

Outline:

- \triangleright Brief recap of baseline scenario at flat top and focus on alternatives
- Impact of high telescopic index at end of squeeze
- Delivering high luminosity to LHCb
- Quick look on the DA feasibility of flat optics in the HL-LHC

8th HL-LHC Collaboration Meeting - 18.10.2018, CERN, Geneva, Switzerland

Baseline Simulation Setup

- **Passed**
 Passed Allen Collisions
	- HL-LHC v1.3 optics, baseline (MS10 included)
	- $I_{MO} = -300A$, $Q' = 15$ → WP optimization required
	- Collisions: IP1/5/8 head-on, IP2 halo at 5σ
	- 2 CC per IP per side, max crab angle (full) 380μrad (6.8MV)
	- Assuming constant round beams 2.5μm emittance *(see Stefania's talk)*

LHCb

- Negative dipole polarity \rightarrow subtract from the external crossing angle
- **Luminosity is levelled at 2** $\cdot 10^{33}$ *Hz/cm*² \rightarrow *Not applicable for the specific study*

Tracking with SixTrack

- 1M turns
- 5 angles in the (x,y) space
- Amplitudes in the range 0σ-10σ [up to 20σ for Squeeze]
- **Estimator: minimum Dynamic Aperture over the angles and amplitudes**
- **Targets**
- $6\sigma \rightarrow$ "Relaxed"
- $5\sigma \rightarrow$ "Aggressive"

Dynamic Aperture simulations: A Progress Report", IPAC2018-MOPMF041

Chromaticity & Octupoles @ End of Levelling
For n^2

Min DA HL-LHC v1.3, $I = 1.2 \times 10^{11}$ ppb, $\beta_{1P1}^* = 0.15$ m
(Q_X,Q_Y) = (62.315, 60.320), ϕ /2=250µrad, ϵ =2.5µm

Min DA HL-LHC v1.3, I = 1.2×10^{11} ppb, $\beta_{\text{IP1}}^* = 0.15$ m ϕ /2=250μrad, ε=2.5μm, Q'=7, I_{MO}=-300A

1. What happens before the collapse?

Beam Stability at Flat Top

- For impedance-driven instabilities, the **beam-beam interaction** can substantially **reduce the stability margin** during the squeeze and **as the beams are brought into collision**
- **Detailed studies for the stability considerations** have been performed under various scenarios (i.e. collimator upgrades).

- The **ATS** scheme already had proven to have a **beneficial impact on the beam stability** (*X. Buffat, 7th HL-LHC Collaboration Meeting, Madrid 2017*)
- The **telescopic squeeze** is already needed at flat top **to recover the stability margins** of a factor 2 (*even when including the low-impedance collimator upgrade*)
- In the case of **no collimator upgrade** \rightarrow **Very large telescopic index** would be required (~4.2).
- **Dynamic Aperture studies including the beam-beam** effects have been performed to evaluate the impact of the **increased telescopic index** at the moment of the **collapse** and at the start of **collisions** on the **beam lifetime** \rightarrow Cases tested: $r_{\text{ats}} = 1.0$ (nominal), 1.7, 2.2, 3.0, 3.33

X. Buffat et al, *"Status of the studies on collective effects involving beam-beam interactions at the HL-LHC"*, CERN-ACC-NOTE-2018-0036

rATS = 1.0 - Nominal Scenario

$L_{\text{lev}} = 5 \times 10^{34} \text{Hz/cm}^2$ 34 Hz/cm² $L_{\text{lev}} = 7.5 \times 10^{34}$ Hz/cm²

Min DA HL-LHC v1.3, Pre-Squeeze, $N_b = 2.2 \times 10^{11}$ ppb Min DA HL-LHC v1.3, Pre-Squeeze, $N_b = 2.2 \times 10^{11}$ ppb β_{ip1}^* =0.41m, ϕ /2=250µrad, ε=2.5µm, Q = 15, I_{MO}=-570A $\beta_{\text{1D1}}^* = 0.60$ m, $\phi/2 = 250 \mu$ rad, $\epsilon = 2.5 \mu$ m, Q'=15, I_{MO}=-570A 13 13 $60.330 60.330 -$ 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 $2.00₁$ 2.00 $2.00₁$ 3.72 2.07 2.00 7.24 7.17 6.62 $60.325 +$ $60.325 +$ 10.76 10.83 11.52 11.59 11.31 11.72 11.31 8.28 8.90 9.52 9.07 200 -11 11 12.41 12.22 12.76 13.10 12.21 12.41 13.03 13.03 13.17 12.41 8.80 8.35 8.57 10.53 11.03 11.03 10.76 11.10 10 60.320 12.41 12.83 12.90 13.52 13.10 13.18 13.72 13.93 14.20 14.25 14.21 14.06 12.97 $60.320 +$ 9.79 10.49 10.83 11.52 11.53 11.72 11.59 11.78 11.34 11.59 11.17 10.97 9.92 10.97 11.42 11.37 11.44 11.59 11.64 11.90 11.45 11.57 11.31 11.31 11.24 12.60 12.75 12.97 13.45 13.33 13.68 14.09 14.14 14.34 14.28 13.92 13.79 9 q 60.315 12.69 12.96 13.77 13.59 13.65 13.52 13.92 14.25 14.18 14.34 14.34 $60.315 +$ 11.10 11.66 11.08 11.52 11.52 11.69 11.42 11.93 11.27 11.47 11.45 11.56 6.28 DA [σ] DA [ø] ζ 12.60 12.88 13.69 13.79 13.58 13.69 13.79 13.79 14.06 14.41 14.21 13.74 11.10 11.66 11.45 11.24 11.75 11.42 11.22 11.52 11.52 11.52 11.31 11.31 9.42 7.69 6.07 $60.310 60.310 -$ 12.74 12.88 13.31 13.27 13.68 13.40 13.59 13.74 14.14 14.21 14.31 13.87 10.97 11.24 11.38 11.59 11.18 11.37 11.79 11.69 11.38 11.42 11.74 11.59 9.40 6.34 $\overline{7}$ 12.38 12.58 13.23 13.17 13.41 13.52 13.45 14.00 13.95 14.00 13.93 13.45 12. 11.10 10.82 11.00 10.76 10.49 11.10 11.39 11.59 11.31 11.59 11.80 11.10 8.55 6.00 60.305 12.51 12.91 13.22 13.72 13.66 13.52 13.37 13.67 13.88 13.82 13.24 13.09 11.94 $60.305 +$ 11.03 10.92 10.69 10.34 10.68 10.59 11.52 11.38 11.59 11.77 11.82 10.96 8.76 12.57 12.90 13.36 13.86 13.38 13.66 12.93 14.00 13.81 14.14 13.48 13.24 11.62 11.10 10.66 10.48 10.90 10.50 10.19 11.43 11.43 11.52 11.47 11.52 8.14 5 -5 60.300 12.28 13.03 13.52 13.67 12.93 12.90 12.41 13.52 13.89 13.47 13.82 13.10 1.68 0.07 6.27 $60.300 +$ 10.63 9.98 10.76 10.32 10.24 10.34 11.60 11.85 11.66 11.67 11.46 10.03 8.0^{4} 12.28 12.55 13.61 13.33 13.12 12.96 12.96 13.38 13.79 13.37 13.32 12.46 10.88 9.67 6.48 $11.17 \quad 10.76 \quad 10.38 \quad 10.35 \quad 10.61 \quad 11.31 \quad 11.38 \quad 11.69 \quad 11.11 \quad 11.50 \quad 11.11$ 9.48 8.48 60.295 11.93 11.88 11.65 11.71 11.85 11.83 11.87 11.72 11.75 11.88 11.69 11.74 10.53 1 60.295 10.69 10.78 10.00 10.48 11.04 11.66 11.15 11.52 11.65 11.38 10 9.57 8.5 62.295 62.300 62.305 62.310 62.315 62.320 62.325 62.330 62.295 62.300 62.305 62.310 62.315 62.320 62.325 62.330 $\mathbf{Q}_{\mathbf{x}}$ $\mathbf{Q}_{\mathbf{x}}$

Due to the **reduced β***, the effect of the **beam-beam is stronger reduced DA**

à

rATS = 3.3 - Pushed Scenario

$\overline{L_{\text{lev}}}= 5 \times 10^{34} \text{Hz/cm}^2$

³⁴Hz/cm² $L_{\text{lev}} = 7.5 \times 10^{34}$ Hz/cm²

Min DA HL-LHC v1.3, Pre-Squeeze, r_{ATS} =3.3, N_b = 2.2×10¹¹ ppb $\beta_{\text{in}}^* = 0.41$ m, $\phi/2 = 250$ µrad, $\epsilon = 2.5$ µm, Q'=15, I_{MO}=-570A

The effect of the **octupoles** is enhanced by the increased **telescopic index**

DA still ok-ish \rightarrow what would happen if I start colliding?

Start of Collisions

 $r_{\text{ATS}} = 1.0$ **r** $r_{\text{ATS}} = 3.33$

• The **octupoles** are too strong Distortion (**folding**) of the footprint (**BBLR over-compensation**)

Squeeze with different rATS

Start of Collisions

Start of Collisions

62,305

HL-LHC PROJECT

62.310

62 315

 Q_{x}

62.320

62 325

62 330

$\frac{1}{\sqrt{2}}$ $\frac{62.305}{62.310}$ $\frac{62.315}{62.315}$ $\frac{62.320}{62.320}$ $\frac{62.330}{62.320}$ 12.12

 Q_{x}

 $\frac{1}{2}$ Karastathis $\frac{1}{2}$ the HL-LHC $\frac{1}{2}$ that $\frac{1}{2}$

62,305

62.310

62 315

 Q_{x}

62.320

62.325

62 330

Reduction of Octupoles at Collisions

To approach the DA at the r_{ATS}=1.0, try a **simple scaling** of the -300A of the operational scenario by the weighted average (h_{MO}) of the direct (f_{MO}) and cross (g_{MO}) **anharmonicities**

$$
f_{MO}(r_x, r_y) \equiv \frac{1}{8} \left[\left(r_x + \frac{1}{r_x} \right)^2 + \left(r_y + \frac{1}{r_y} \right)^2 \right]
$$

$$
g_{MO}(r_x, r_y) \equiv \frac{1}{2} \left[1 + \frac{1}{4} \left(r_x + \frac{1}{r_x} \right) \cdot \left(r_y + \frac{1}{r_y} \right) \right]
$$

$$
c_{MO} = 2 \times \frac{\sum_{i \in MO} \beta_{xi} \beta_{yi}}{\sum_{i \in MO} \beta_{yi}^2} \approx 0.71
$$

S. Fartoukh et al, "About flat telescopic optics for the future operation of the LHC", CERN-ACC-2018-0018

 $h_{MO} \equiv \frac{f_{MO} + c_{MO} \cdot g_{MO}}{1 + c_{MO}}$

- Scaling by the h_{MO} we get:
	- For rats = $1.0 \rightarrow$ IMO = -300 A
	- For rats = 1.7 \rightarrow IMO = -241 A
	- For rats = $2.2 \rightarrow$ IMO = -187 A
	- For rats = $3.0 \rightarrow$ IMO = -124 A
	- For rats = $3.3 \rightarrow$ IMO = -106 A

Reduction of Octupoles at Collisions

N. Karastathis | 8th HL-LHC Collaboration Meeting | 18.10.2018 $/$ 16

Squeeze Stability - Summary

- **The increased telescopic index** before the **collapse** has a detrimental effect in terms of **DA**, enhancing the tune spread induced by lattice octupoles.
- **F** The nominal configuration of **r**_{ATS} = 1.0 gives 14σ DA for the nominal and 12σ for **the ultimate** scenario \rightarrow visible the effect of the **reduced** β^* .
- **F** For **very large telescopic** index (rATS = 3.33) the **octupoles are dominating the DA** result (twisting of the footprint) \rightarrow no significant difference between the nominal (60cm) and ultimate (41cm)
- **With the reduction of the telescopic index we observe the increase of the DA.** \rightarrow r_{ATS} = 1.7 very close to the nominal
- Right after the collapse, at the **start of collisions**, due to the **increased effective octupoles** a **reduction of the DA** is observed → In this respect, **favorable the 1.7 and 2.2** tele-index cases, with still **reduced DA**.
- **Reducing the octupole current** at any tele-index **some DA margin is recovered**. *Τhis acceptable for coherent stability (reduced #LR for the non-colliding bunches)* → Need of optimization of octupole reduction function from the collapse to collisions

2. What is the impact of HiLumi LHCb?

LHCb Phase II Upgrade

- The LHCb collaboration proposed an Upgrade II during HL-LHC operation, where IP8 will collide at highluminosity ($\approx 1 - 2 \times 10^{34}$ Hz/cm²) to collect more than 300fb⁻¹ by the end of HL-LHC operation.
	- **This luminosity target is comparable with the present LHC ATLAS/CMS luminosity.**
- *Would this be feasible, while preserving acceptable IP1/5 performance?*

² 1 × bbsep [×] = ± cos = ⋅ Φ = ⋅ = ⋅ ∗ ∗∥ ∗ × 2 × 2 4 [×] 2 1 + Φ external, * at constant luminosity Protons per bunch 2.2 10¹¹ 1 × 10³⁴ Hz/cm² Number of Bunches 2572(2374) R.M.S. bunch length 7.61(9.0) cm baseline +/- Polarity By<0 / By>0 Orbit corrector limitations • Minimum β* is constrained by **optics** flexibility. • Maximum crossing angle limited by **orbit corrector strength** • For a given β*: • **Aperture** constrains maximum crossing angle. • **Beam-beam** effects constrains minimum Optics limitations crossing angle. 2 × 10³⁴ Hz/cm² I. Efthymiopoulos *et al*, *"LHCb Upgrades and operation at* 10³⁴ −2 −1 *luminosity –A first study"*, CERN-ACC-NOTE-2018-0038 logo area N. Karastathis | 8 19 th HL-LHC Collaboration Meeting | 18.10.2018 Courtesy of R. de Maria

Effect of β* and Levelling

Available Dynamic Aperture at the end of IP1/5 Leveling.

• No significant impact found.

Effect of the External Angle

Available Dynamic aperture at the end of the IP1/5 leveling

Min DA HL-LHC v1.3, I = 1.2×10^{11} ppb, $\beta_{1P1}^* = 0.15$ m, $\phi_{1P1}/2 = 250 \mu$ rad, β_{IP8}^* =1.5m, φ_{IP8}/2=250μrad, ε=2.5μm, Q'=15, I_{MO}=-300A

Min DA HL-LHC v1.3, $I = 1.2 \times 10^{11}$ ppb, $\beta_{1P1}^* = 0.15$ m $φ_{IP1}/2=250$ μrad, β_{1P8}=1.5m, φ_{1P8}/2=180μrad ε=2.5μm, Q'=15, I_{MO}=-300A

Min DA HL-LHC v1.3, I = 1.2×10^{11} ppb, $\beta_{\text{IP1}}^* = 0.15$ m, $\phi_{\text{IP1}}/2 = 250 \mu$ rad, $β_{IP8}^*$ =1.5m, φ_{IP8}/2=200μrad, ε=2.5μm, Q'=15, I_{MO}=-300A

Min DA HL-LHC v1.3, I = 1.2×10^{11} ppb, $\beta_{\text{IP1}}^* = 0.15$ m, $\phi_{\text{IP1}}/2 = 250 \mu$ rad, $β_{1PR}^* = 1.5$ m, φ_{1P8}/2=150μrad, ε=2.5μm, Q'=15, I_{MO}=-300A

Beam-beam limitations at collision

Min DA HL-LHC v1.3, β_{IP8}=1.5m, φ_{IP8}/2=250μrad, β_{IP1.5}=0.15m

 $(Q_X, Q_Y) = (62.315, 60.320), \epsilon = 2.5 \mu m, Q' = 15, I_{MO} = -300A$

Min DA HL-LHC v1.3, β_{IP8}=1.5m, φ_{IP8}/2=180μrad, β_{IP1,5}=0.15m $(Q_X, Q_Y) = (62.315, 60.320), \epsilon = 2.5 \mu m, Q = 15, I_{MO} = 300A$

Min DA HL-LHC v1.3, β_{IP8}=1.5m, φ_{IP8}/2=200μrad, β_{IP1.5}=0.15m $(Q_X, Q_Y) = (62.315, 60.320), \epsilon = 2.5 \mu m, Q = 15, I_{MO} = -300A$

 $\overline{}$

Effect of Spectrometer Polarity

- **Spectrometer polarity** has an impact of minimum external crossing angle.
- Tentative IR8 external half crossing angle with horizontal crossing:
	- -200 μrad with Neg. polarity (-65 μrad half crossing angle)
	- -150 μrad with Pos. polarity (-285 μrad half crossing angle)

Min DA HL-LHC v1.3, β_{IP8}=1.5m, φ_{IP8}/2=200μrad, β_{IP1.5}=0.15m

Min DA HL-LHC v1.3, β_{IP8}=1.5m, φ_{IP8}/2=150μrad, LHCb_{dipole}=-1 $\beta_{\text{IP1.5}} = 0.15$ m, $(Q_X, Q_Y) = (62.315, 60.320)$, $\varepsilon = 2.5$ µm, $Q' = 15$, I_{MO} = -300A

Crossing Angle Plane

• A **vertical external** half crossing angle of 160 μrad is expected to behave in between the two **horizontal options** (210 μrad half crossing angle)

 \triangleright no need of beam screen rotation.

Min DA HL-LHC v1.3, I = 1.2×10^{11} ppb, $\beta_{\text{IP1}}^* = 0.15$ m $φ_{IP1}/2=250$ μrad, β_{$^{*}_{IP8}=1.5$ m, φ_{IP8}/2=150μrad (Vertical)} ε=2.5μm, Q'=15, I_{MO}=-300A

Min DA HL-LHC v1.3, β_{IP8}=1.5m, φ_{IP8}/2=200μrad, β_{IP1,5}=0.15m $(Q_x, Q_y) = (62, 315, 60, 320), \epsilon = 2.5 \mu m, Q = 15, I_{MO} = 300A$

Min DA HL-LHC v1.3, $\beta_{IP8}=1.5$ m, $\phi_{IP8}/2=150$ urad, LHCb_{dinole} = 1 $\beta_{\text{IP1.5}} = 0.15$ m, $(Q_X, Q_Y) = (62.315, 60.320)$, $\varepsilon = 2.5$ µm, $Q = 15$, I_{MO} = 300A

Simple Model: Constant ε evolution & xing-angle

Some Performance Estimates

Some Performance Estimates

LHCb Upgrades

LHCb at 250 µrad \rightarrow Spectrometer adds in xing

LHCb Phase II Upgrade - Summary

- **For the Phase-II upgrade of the LHCb** detector, increased luminosity should be provided $(-1.0 \times 10^{34}$ Hz/cm²) without large degradation of the luminosity provided to the main IPs.
- Different constraints arise from optics, aperture and beam-beam effects.
	- **Reduction of** β^* **from 3m to 1.5m**, increasing the delivered luminosity 5 times \rightarrow No significant impact on the end of IP1/IP5 levelling DA.
	- **Reduction of the external crossing angle impacts** the IP1/5 end of levelling DA.
	- **The spectrometer polarity impacts** the DA and the integrated performance.
- **Tentative scenarios identified with levelled luminosity of** 1.0×10^{34} **Hz/cm² and similar** performance:
	- **1. Horizontal crossing** with **-200/+150 urad** external Polarity significantly impacts performance.
	- **2. Vertical crossing** is also possible with rotation of the crossing plane at flat top
- Also, **flat optics** could be a solution for LHCb operation since:
	- Can improve **luminosity at constant aperture** and beam-beam separation in the triplet
	- **Timum-Triplet irradiation without BS rotation**

3. First look at HiLumi with flat optics

"Layman's" Intro to Flat Optics

- **Flat Optics** have been proposed as *"plan B"* of HL-LHC operation **without CC**, due to their increased performance in terms of virtual luminosity.
- Contrary to the LHC case, the HL-LHC triplet beam screens allow for flattening the beams in the two main IPs **without restrictions of the crossing plane**.
- Alternating crossing planes, the flat optics option **reduces the head-on beam-beam tune shift** (and spread) at constant peak luminosity.
- The **long range beam-beam** induced tune shift is not full compensated \rightarrow significant impact on the tune shift, **almost similar to HO**.
- The **BBLR compensation** (octupoles, wires, etc) plays a **crucial** role on the available operational margins (*see Guido's, Kyriacos' talks*).

- **A scheme containing flat optics would require** to **start collide at round optics** then flatten the β^* , squeezing more in the parallel plane while intensity decays.
	- **→** Such operational scenario is still **on-going work**.
	- Here we have a **first look** at the **end of levelling conditions**.

What is my end of levelling?

Optics from the "catalogue": **r*=4** i.e. **βΧ/β// = 35.2/8.8 cm**

 Assuming **11.5σ** crossing angle, **leveling by separation** and some additional **emittance growth** on top of IBS+SR

> IBS+SR+Extra Growth H = 0.05 μ m/h & V = 0.10 μ m/h | Leveling at 5.0×10³⁸Hz/m² $N_{1,2} = 2.20 \times 10^{11}$ pbb, $\phi/2 = 178$ µrad, $\beta_x^*/\beta_y^* = 35.2/8.8$ cm, $\varepsilon_n^{x,y} = 2.5$ µm, $\sigma_{boff} = 111$ mb, 2 IPs, $\sigma_{inel} = 81$ mb

N. Karastathis | 8th HL-LHC Collaboration Meeting | 18.10.2018 $/$ 31

Footprints

The scaling of octupole current for the BB compensation follows:

$$
I_{MO}^{bb} = 315[A] \times \frac{N_b[10^{11}]}{1.25} \times \left(\frac{80}{\beta_X[cm]}\right)^2 \times \left(\frac{300}{\Theta_X}\right)^4 \times \frac{h_{bb}(r^*)}{h_{MO}(r_X,r_{//})}
$$

For our end of leveling conditions: $I_{MO}^{bb} \approx 1557$ A

Some **b6** effect still visible even on 3σ footprint \rightarrow a simple **BBLR mitigation with octupoles** could be **marginal**

Tune & Octupoles: 11.5σ & Q' = 7

Tune split d = 10^{-2}

Min DA HL-LHC v1.3, $\beta_X/\beta_{II} = 35.2/8.8$ cm, N_b = 1.5×10¹¹ ppb $Q_v = Q_x + 0.01$, $\phi/2 = 177.5$ µrad, $\epsilon = 2.5$ µm, $Q' = 7$

Tune split d = 5×10^{-3}

Min DA HL-LHC v1.3, β_X/β_{//}=35.2/8.8cm, N_b = 1.5×10^{11} ppb $Q_v = Q_x + 0.005$, $\phi/2 = 177$. 5urad, $\epsilon = 2.5$ um, $Q' = 7$

- Optimal configuration seems around $I_{MO} = -100$ A with 5.7σ of DA with $(.324, .329)$
- BBLR compensation with **octupoles** are **not enough** to preserve good DA even with **11.5σ**
- **Increasing the normalized crossing would significantly affect the integrated performance.**

See Kyriacos' talk for an intro on the wire optimization for round optics

Wire Compensation

 Using the tools developed for S. Fartoukh, *et al.*, *"Compensation of the long-range beambeam interactions as a path towards new configurations for the high luminosity LHC"*, PRAB 18 121001 (2015)

BBLR Compensation @ 11.5σ

- The addition of the wire adds ~**1.5σ at constant normalized crossing angle**.
- Additional studies showed that **the minimum DA** is only marginally affected by the **collisions in IR2/IR8 (~0.3σ)**, and that the additional **LR in the D1 have no impact**. \rightarrow But they do affect the shape of the tune space.

CERN $\overline{}$

Tune Scan with wire at ~107.4 A m for 10.5σ

Min DA HL-LHC v1.3, I = 1.5×10^{11} ppb, $\beta_X/\beta_{\text{II}} = 35.2/8.8$ cm ϕ /2=162µrad, ε=2.5µm, Q'=7, I_{MO}=-100A, I_W=80%

 $\overline{}$

N. Karastathis | 8th HL-LHC Collaboration Meeting | 18.10.2018 $\sqrt{37}$

BBLR Compensation @ 10.5σ

Octupoles Wire [I_{MO}=-100A]

Could even try to reduce further the crossing? (or increase chroma?)

Flat Optics Simulations - Summary

- Due to the reduced β* in one of the two planes, the **flat optics option** can be a **great performance booster**, **with or without Crab Cavities** (*see Stéphane's talk*)
- **However, the lack of LR passive compensation would require to start collisions at the round mode** and switch to flat with the reduction of intensity.
- At small crossing angles (~10.5σ) the b6 effect is impacting the footprint, **making the compensation with octupoles quite difficult** (<5σ DA).
- On the other hand, an optimal interplay between octupole compensation and **DC wire** compensation can be found.
	- The wire would be a **relatively cheap BBLR compensator** allowing to push the crossing angle and thus boost performance.
	- **However a good control of the tune** would be again crucial for the optimal operation.
- First DA studies show that HL-LHC at the end of levelling intensity $\approx 1.5 \times 10^{11}$ ppb up to 6.7 σ of DA can be achieved at a crossing angle as low as **10.5σ with DC wire**.
- **Additional optimizations** can be improve even further the situation resulting in more pushed crossing angle.

Thank you for your attention

N. Karastathis | 8th HL-LHC Collaboration Meeting | 18.10.2018

Preliminary study for 10.5σ (~5.5σ DA)

Min DA HL-LHC v1.3, N_{LR.D1}=0, No IR2/8, I = 1.5×10^{11} ppb β _x/ β _i = 35.2/8.8cm, ϕ /2=162urad, ϵ =2.5um, Q[']=2, I_{MO}=0A, I_W=80%

Min DA HL-LHC v1.3, $N_{LR, D1} = 5$, With IR2/8, I = 1.5×10¹¹ ppb β _X/ β _{//}=35.2/8.8cm, ϕ /2=162µrad, ϵ =2.5µm, Q'=2, I_{MO}=0A, I_W=80%

Min DA HL-LHC v1.3, $N_{LR, D1} = 5$, No IR2/8, I = 1.5×10¹¹ ppb β _x/ β _i = 35.2/8.8cm, ϕ /2=162 μ rad, ϵ =2.5 μ m, Q[']=2, I_{MO}=0A, I_W=80%

Min DA HL-LHC v1.3, $I = 1.5 \times 10^{11}$ ppb, $\beta_X/\beta_{II} = 35.2/8.8$ cm ϕ /2=162µrad, ε=2.5µm, Q =7, I_{MO}=-100A, I_W=80%

Levelling at 5e34 @ 10σ (155)

End of levelling bunch intensity \sim 1.4e11

IBS+SR+Extra Growth H = 0.05 μ m/h & V = 0.10 μ m/h | Leveling at 5.0×10³⁸Hz/m² $N_{1,2} = 2.20 \times 10^{11}$ pbb, $\phi/2 = 155$ µrad, $\beta_x^*/\beta_y^* = 35.2/8.8$ cm, $\varepsilon_n^{x,y} = 2.5$ µm, $\sigma_{\text{soft}} = 111$ mb, 2 IPs, $\sigma_{\text{inel}} = 81$ mb

Levelling at 7.5e34 @ 10σ (155)

End of levelling bunch intensity \sim 1.7e11

IBS+SR+Extra Growth H = 0.05 μ m/h & V = 0.10 μ m/h | Leveling at 7.5×10³⁸Hz/m² $N_{1,2} = 2.20 \times 10^{11}$ pbb, $\phi/2 = 155$ µrad, $\beta_x^*/\beta_y^* = 35.2/8.8$ cm, $\varepsilon_n^{x,y} = 2.5$ µm, $\sigma_{\text{soft}} = 111$ mb, 2 IPs, $\sigma_{\text{inel}} = 81$ mb

Levelling at 5e34 @ 11σ (170)

End of levelling bunch intensity \sim 1.4e11

 $\overline{}$

IBS+SR+Extra Growth H = 0.05 μ m/h & V = 0.10 μ m/h | Leveling at 5.0×10³⁸Hz/m² $N_{1,2} = 2.20 \times 10^{11}$ pbb, $\phi/2 = 170$ μ rad, $\beta_X^*/\beta_N^* = 35.2/8.8$ cm, $\varepsilon_n^{X,Y} = 2.5$ μ m, $\sigma_{b} = 111$ mb, 2 IPs, $\sigma_{inel} = 81$ mb

Levelling at 7.5e34 @ 11σ (170)

End of levelling bunch intensity $\sim 1.8e11$

 $\overline{}$

More Squeeze stuff

Min DA HL-LHC v1.3, Pre-Squeeze, $r_{\text{ATS}} = 3.3$, N_b = 2.2×10¹¹ ppb β_{1p1}^* = 0.60m, ϕ /2=250µrad, ε=2.5µm, Q'=15, I_{MO}=300A

HL-LHC v1.3, Pre-Squeeze, $r_{\text{ATS}} = 3.33$, $\beta^* = 60$ cm, $N_b = 2.2 \times 10^{11}$ ppb (Q_X, Q_Y) = (62.310, 60.315), ε_n = 2.5 μ m, Q = 15 20 \bullet Min DA \bullet Max DA 18 \bullet Avg DA 16 $5\frac{6}{5}$ 14 Dynamic Aperture

∞ 5

∞ $N. K_c$ $\frac{2}{-600}$ $\frac{1}{-400}$ $\frac{1}{-200}$ $\frac{1}{200}$ $\frac{1}{200}$ $\frac{1}{400}$ $\frac{1}{600}$

Min DA HL-LHC v1.3, Pre-Squeeze, r_{ATS} =3.3, N_b = 2.2×10¹¹ ppb $\beta_{\text{1p1}}^* = 0.60$ m, $\phi/2 = 250 \mu$ rad, $\epsilon = 2.5 \mu$ m, Q'=15, I_{MO}=0A

FRN

Impact of External Crossing Angle

Tune & Octupoles: 11.5σ & Q' = 15

Tune split d = 10^{-2}

Tune split d = 5×10^{-3}

Min DA HL-LHC v1.3, $\beta_X/\beta_{II} = 35.2/8.8$ cm, N_b = 1.5×10¹¹ ppb $Q_v = Q_x + 0.01$, $\phi/2 = 177.5$ µrad, $\epsilon = 2.5$ µm, $Q' = 15$

Min DA HL-LHC v1.3, $\beta_X/\beta_{II} = 35.2/8.8$ cm, N_b = 1.5×10¹¹ ppb $Q_v = Q_x + 0.005$, $\phi/2 = 177.5$ urad, $\epsilon = 2.5$ um, $Q = 15$

Reducie the chromaticity to gain some margin (targeting 6σ)

