

Design, Fabrication, Commissioning and Testing of FRIB 2 K Cold Compressor System

<u>P Knudsen</u>¹, V Ganni¹, F Casagrande¹, A Fila¹, N Hasan¹, M Wright¹, G Vargas², N Joseph¹

¹ Facility for Rare Isotope Beams (FRIB), Michigan State University (MSU), East Lansing, MI 48824 USA ² Jacobs, Houston, TX 77058 USA

This material is based upon work supported by the U.S. Department of Energy Office of Science under Cooperative Agreement DE-SC0000661, the State of Michigan and Michigan State University. Michigan State University designs and establishes FRIB as a DOE Office of Science National User Facility in support of the mission of the Office of Nuclear Physics.

Background

- Cryogenic process which provides 2 Kelvin (31 mbar) to the SRF cavities in the FRIB Linac uses a series of five cryogenic centrifugal ("cold") compressors ("CC")
 - Brings the helium from ~29 mbar 4 K up to 1.2 bar ~30 K
 - i.e., "Full" cold compression (sub-atm. to positive pressure)
 - CC discharge injected back into the 4.5 K cold box
 - Housed within an insulating vacuum vessel, or sub-atmospheric cold box
- This type of 2 K system is superior to 'partial' (or 'mixed') cold compression systems; e.g.,
 - More efficient, less expensive, and requires a smaller equipment 'foot-print'
 - More reliable since the sub-atmospheric condition is dealt with in the most immediate manner
 - » i.e., risk of air in-leak contamination is reduced
 - And the CC's are substantially more robust and require less maintenance than sub-atmospheric warm compression equipment

Background (cont.)

- Often the limited turn-down is cited as a significant drawback to full vs. partial (or mixed) cold compression
 - Underlying motivation usually driven by assumptions regarding commissioning schedule of the accelerator, and/or uncertainties in the accelerator load
 - In practice, the turn-down for partial cold compression (of large systems) has been demonstrated for approximately a 3 to 1 ratio
 - <u>Energy savings for this kind of turn-down can only be realized if the 4.5 K</u> refrigeration system can also turn-down efficiently over this range
 - Prudent?...2 K load capacity requirements strongly driven by a relatively short term commissioning activity vs. the long term science program needs
- It is fundamental to stable and reliable 2 K operations that the 4.5 K system refrigeration system be capable of,
 - Wide capacity range, and load type
 - Handling transient processes including upsets and those required for normal operations

Background (cont.)

- To achieve a sub-atmospheric condition from an initial positive pressure (say, 1.2 bar), the system must be 'pumped-down'
 - Full cold compression pump-down is a more complex and challenging process than a partial cold compression process
 - Latter allows operators a wider margin when pumping-down the system
 » Since the vacuum pumps (in such a system) can reduce a significant portion of the pressure ratio which the cold compressors must handle
 - For these processes...many,
 - » Many control elements (e.g., compressor speeds, compressor bypasses, cryomodule liquid level control valves, cryomodule heaters, etc.)...
 - » Across a number of sub-systems (main compressors, 4.5 K cold box, subatmospheric cold box, cryogenic distribution, cryomodules, etc.) and,
 - »Many possible process parameters (e.g., pressures, temperatures, speed, liquid levels, etc.) with which to regulate the control elements
 - » And, often the initial-starting conditions are typically different

Background (cont.)

- Despite complexity, with the implementation of,
 - Floating Pressure Process for the 4.5 K refrigerator, and,
 - Simple process control developed (by one of the authors, 1994) for the JLab sub-atmospheric cold boxes
- ...the full cold compression process is efficient and stable for these transient operations (and upsets)
 - This process ensures a steady acceleration of the cold compressors during the critical part of the pump-down process
 - Has been well established for the past 25 years (since 1994) at JLab, and for the past 15 years at SNS
- FRIB is one of five sub-atmospheric 2 Kelvin helium systems of its kind in the world
 - However, only the two at Jefferson Lab (JLab) are of comparable capacity
 - i.e., the upgraded original system, and the 12 GeV refrigerator
 - System at SNS and XFEL are roughly two-thirds the capacity of the FRIB and JLab systems

Process Design Requirements

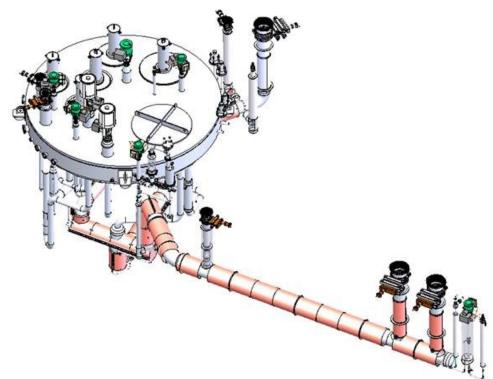
 FRIB cryogenic staff performed process studies, preliminary analysis, and developed the specification for the cold compressors

	CC Mass Flow Rate	CC1 Suction Temperature		CC5 Discharge Temperature	CC5 Discharge Pressure
	[g/s]	[K]	[mbar]	[K]	[bar]
Maximum Capacity	180	3.9	≤ 28	< 30	1.20
Nominal Capacity	120	4.2	29	< 30	1.20
Minimum Capacity	110	4.3	29	< 30	1.20

- Specification also included requirements for the start of pump-down, pump-down peak, and an upgrade provision
- RFP was awarded in October 2015 and delivered to FRIB December 2016

Cold Compressors

- 2 K system uses five stages of cold compressors
 - Stage 1 (CC1) is the largest and handles the flow returning from the Linac
 - Stage 5 (CC5) is the smallest and its discharge is injected to the 4.5 K helium refrigerator (at the 30 K temperature level)
 - Compressor wheel diameters range from about 200 mm to 85 mm; with maximum speeds ranging from ~300 to over 800 Hz
 - Stages 4 and 5 are interchangeable; this was intentional
 - All the compressor wheels are 'three dimensional' and use a vanless volute design

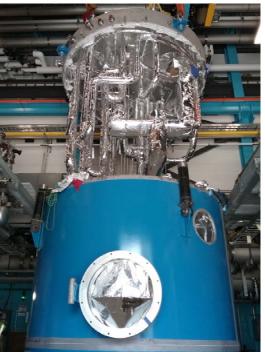

Compressors

- Bearings: 5-axis AMB with touch-down mechanical bearings
- Motors: 2 pole 100 V synchronous permanent magnet
 - » CC1/2 higher torque lower speed motor; as compared to stages CC3/4/5
 - » Mounted externally (not within the cold box vacuum)
 - » Motors and wheels can be removed from casings, while maintaining an insulating vacuum
 - » Water cooled and guard vacuum intercept to prevent air in-leaks
 - » Separate electrical cabinet that houses the variable frequency drive (VFD), AMB controller, and local controller
 - » <u>There are no other 2 K helium cryogenic plants in the world which use these</u> <u>compressors/motors</u>

Sub-Atmospheric Cold Box: Design

- Except for CC's, entire design of sub-atmospheric cold box was led and performed by the FRIB cryogenic group; includes,
 - Process design and analysis; i.e., performance, stability, sizing, etc.
 - Mechanical design; i.e., piping, components, stress, etc.
 - Electrical design; i.e., instruments, wire/cabling, power supplies, etc.
 - Controls design; i.e., programming communications, human-machineinterface, etc.
- Internal piping and top plate of sub-atmospheric cold box

Sub-Atmospheric Cold Box: Design (cont.)

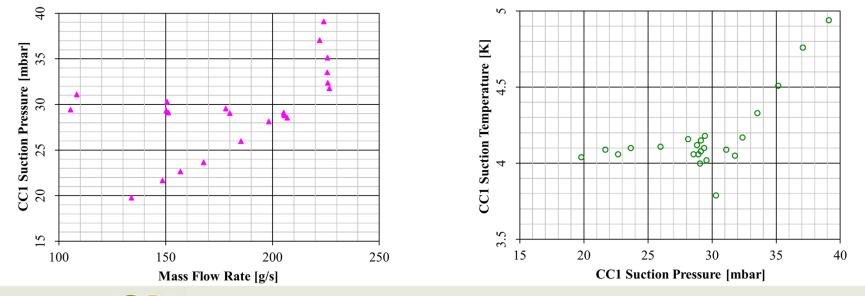

- Design includes the following features:
 - Shield (approx. 35 K) of suction line to CC1
 - Back-filling from 10 kL LHe dewar (vapor), or Linac 4.5 K (return) vapor
 - Back-filling from 30 K injection on 4.5 K helium cold box
 - Forward-filling from Linac
 - Process heater on 4.5 K vapor injection to regulate CC1 suction temperature
 - CC overall 'train' bypass (i.e., CC5 to CC1)
 - CC2 to CC1 bypass
 - Ability to prevent Linac over-press. & min. boil-off during a power outage
 - Ability to warm-up, clean-up and then (re-)cool-down any individual compressor or the entire cold box without affecting 4.5 K operations
 - Instruments (pressure, temperature, mass flow, power, speed) necessary to characterize performance of individual compressors and overall 'train'
 - Any combination of the three Linac segments (LS1 to LS3) can be connected, and operated at 2 K
 - Provision to prevent back-flow (and in-leakage) of air into helium process from a sub-atmospheric relief valves

Sub-Atmospheric Cold Box: Fabrication

- Except for cold compressors (including motors and electrical cabinets) and vacuum shell, entire cold box was fabricated 'in-house' at FRIB
 - Mechanical and I&EC
 - Vacuum shell and top plate was fabricated by local supplier
- Installation of the top plate in the vacuum shell

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science Michigan State University

Sub-Atmospheric Cold Box: Preparations for Commissioning (cont.)

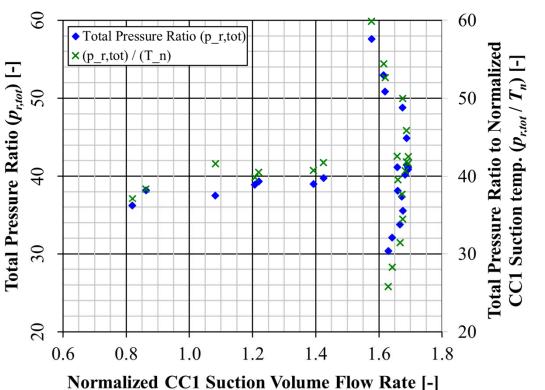

- Mechanical preps included:
 - ASME code (piping) leak ('pressure') test
 - Sensitive helium leak check: piping to vacuum, external piping
 - Valve leak-through test
 - Insulating vacuum check
 - Clean-up
 - Spin check at maximum speed under vacuum at ambient temperature, 14-Dec-2018
 - Diode calibration at 4.5 K ('flood' with liquid), 17-Dec-2018
 - Partial warm-up (for u-tubes)
 - Connection to Linac (LS-1), 18-Dec-2018
 - Cool-down (to 4.5 K)

- I&EC preps included:
 - Simulated funct. & oper. check-outs
 - Valve operation
 - Test heater verification
 - Insulating vacuum system
 - CC communications interface
 - CC enable, run/stop/reset
 - CC hard landing logic
 - Permissives
 - Trips (safety shut-downs)
 - Alarms
 - PID loops
 - Pump-down sequencer and logs
 - Install power measurement in vendor AMB/VFD cabinets
 - Fix transformer grounding
 - Fix/connect wiring terminations to motors

Commissioning and Testing

- System successfully pumped-down & operated at 2 K on the third attempt (19-Dec-2018, which was the second day of commissioning)
 - To provide adequate suction volume for stability: connected to the first Linac segment
- Further testing performed in Jan. and Feb. 2019 for several days each time; objectives to,
 - Verify the design basis (max., nominal, and min. capacity), and,
 - Characterize the operating boundaries

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science


Michigan State University

P. Knudsen, July 2019 CEC, Slide 12

Commissioning and Testing (cont.)

- LHS y-axis: total (or overall) pressure ratio
- RHS *y*-axis: total pressure ratio divided by the normalized CC1 suction temperature
 - 'Normalized' i.e., relative to nominal design condition (4.2 K)
 - Correction is done, as it is known that stability limit is a function of both the pressure ratio and suction temperature
- x-axis: normalized CC1 suction volume flow
 - CC1 suction volume flow calculated from measured pressure, temp. & mass flow rate
 - 'Normalized' i.e., divided by normal design condition vol. flow

Commissioning and Testing (cont.)

- As can be seen this system has a considerable operating range...
- And a <u>turn-down of nearly 2 to 1 at the operating condition</u> (i.e., at a total, or overall pressure ratio of approx. 38 to 40)
- Operation of these cold compressors was very stable
- Further testing-mapping is planned
- Three significant but minor issues occurred during commissioning
 - CC mass flow measurement initially indicated lower than actual corrected on 20-Dec-2018 (i.e., the third day of commissioning, before the second successful pump-down)
 - CC motor power calculation and CC AMB parameter (for indication of rotor clearance) were corrected during subsequent testing-mapping in Jan. and Feb. 2019

Conclusions

- FRIB cryogenic staff led and were responsible for the specification, design, fabrication, and commissioning of sub-atmospheric cold box
- Entire design of the sub-atm. cold box was led and performed by FRIB cryogenic group: i.e., process, mechanical and electrical (except CC's)
- Entire cold box was fabricated 'in-house' at FRIB mechanical and I&EC (except for CC's, and vacuum shell)
- FRIB cryogenic group achieved successful CC pump-down to 31 mbar (i.e., 2 Kelvin) on Linac segment one (LS1) on the third attempt
- All commissioning issues were quickly resolved
- Testing-mapping has demonstrated a very wide range of stable operation
- FRIB expresses it appreciation to Air Liquide and MECOS for their contribution to the success of this project

