

Detector Magnets for the Future Circular Collider

Herman ten Kate

for the FCC Detector Magnets Working Group:

C. Berriaud, B. Cure, A. Dudarev, A. Gaddi, H. Gerwig, V. Ilardi, V. Klyukhin, T. Kulenkampff, M. Mentink, H. Filipe Pais da Silva, U. Wagner

1. Magnets for FCC-electron-positron collisions detector

For FCC-ee two detector designs are proposed:

- a conventional 2T solenoid around the calorimeter, essentially a downscaled CLIC design, not further presented here,
- a challenging 2T solenoid "ultra-thin & transparent" around the tracker, proposed by the magnet team and accepted as baseline.

IDEA detector, innovative thin solenoid around tracker

Solenoid inside or outside calorimeter

Motivation:

 Magnetic field is only required in the tracker + muon chambers, but most stored magnetic energy (some 80%) is wasted in the calorimeter space!

Obvious savings when coil is positioned inside:

- Factor ≈ 4.2 in stored energy
- Factor ≈ 2.1 in cost!

But design is not obvious and requires R&D and a demonstrator.

Solenoid *outside* or *inside* calorimeter?

Solenoid for "ultra-thin" IDEA detector

Requirements:

- 2 T in thin Solenoid with radiation length X₀ < 1 in radial direction!
- Radial envelope < 300 mm.
- Magnetized iron for muon detection.

Strategy:

- Reduce thickness of cold mass.
- Reduce thickness of cryostat.
- Magnetic flux return by a light return yoke.

IDEA detector (International Detector Electron Accelerators), an innovative thin solenoid around tracker

FCC-ee 2T "thin" solenoid inside HCAL

12					
2					- 5
51.5					
11					
l at					-
field					
.eg 0.5					
S					
0		123			-
	-				
-0.5		and the			
0	2	4	6	8	10

 Value
5mT stray field in radial direction at 15 m, in axial direction at 20 m
Coil composition: mainly aluminum (77 vol.%) + copper (5 vol.%) + 4 NbTi (5 vol.%) + glass/resin/dielectric film (13 vol.%).

Radiation thickness:

- Cold mass: $X_0 = 0.46$, $\lambda = 0.09$
- Vacuum vessel (25 mm Al): *X*₀ = 0.28
- Preliminary design shows that achievable is total X₀ = 0.8 < 1 !

Property	Value
Magnetic field in center [T]	2
Free bore diameter [m]	4
Stored energy [MJ]	170
Cold mass [t]	8
Cold mass inner radius [m]	2.2
Cold mass thickness [m]	0.03
Cold mass length [m]	6

R&D for a Thin & Transparent Solenoid

Crucial technologies to be developed:

- High YS Super-Conductor allowing self-supporting coil windings.
- Maximum energy extraction at quench to minimize cold mass hot spot temperature.
- New ultra-light cryostat design following two routes:
 - high level of thermal insulation and mechanical support through metal foil sealed glass spheres or permaglass under vacuum (not presented here).
 - lightest possible metallic-vacuum cryostat using honeycomb structures or corrugated plate-sandwich panels.

1st design shows that it is feasible; would be a breakthrough towards lighter and smaller detector magnets, and significant cost saving.

Conductor:

- NbTi/Cu Rutherford cable, Al 0.1%Ni stabilizer, welded Al-7xxx alloy bar reinforcements
- 20 kA operating current, 0.85 H self-inductance
- 6.5 K current sharing temperature (at 3.2 T peak)
- 2.0 K temperature margin at 4.5 K cooling
- 100 MPa combined Yield Strength of Al-Ni + NbTi core + G10 insulation
- 280 MPa local peak stress
- 1 layer coil, 595 turns, conductor length 8.3 km
- Energy over mass density: 24 kJ/kg.

Conductor axial thickness: 10 mm (including insulation)

EB welded reinforcement, Sgobba [2010]

R&D on Cryostat – Using thin reinforced outer shell

Main features:

- CAL is supporting the cryostat
- Cold mass supports to end flanges
- Solid plate inner shell
- Outer shell reinforcement rings to prevent buckling
- Material Al 5083-O

	Loads
Tracker mass [t]	4
External pressure [MPa]	0.1
Self mass [t]	7
Cold mass + rods thermal shrinkage [kN]*	215

* Initial estimate is 3 times the weight of the cold mass

	Inner shell	Outer shell	Flanges
Material	AI 5083-O	AI 5083-O	AI 5083-O
Thickness [mm]	3	15*	12
Min thickness [mm]	3	13	12
Max thickness [mm]	3	73	12
Shield thickness [mm]	3	3	3
Volume [t]	0.5	1.7	2 x 0.13
Mass [t]	1.4	5.2	2 x 0.4
Total mass [t]	7.4		
Stress limits	According to EN 13458		

Cryostat option – Corrugated outer shell plate

Option for the external shell, use corrugated plate:

- More uniform thickness seen by particles
- Thickness of outer shell is very dependent on the period and amplitude of the corrugation
- Flat flanges may not be suitable in this case

	External shell	Flanges
Material	AI 5083-O	AI 5083-O
Thickness [mm]	9	15
Sin Amplitude [mm]	50	-
Wave period [mm]	500	-
Volume [t] ¹	1.4	2 x 0.16
Mass [t] 1	3.8	2 x 0.5
Mass cryostat [t] ¹	6.2	

² EN13456 standard

Best cryostat option – Use honeycomb-like plate

 Drastic effective thickness reduction possible by using two separated plates with filling structure in between

When comparing the 4 solutions, honeycomb delivers the best minimum radiation thickness!

omparison of outer shell solutions and effect on radiation length				
	Uniform plate	Corrugated plate	Reinforcement rings	Honeycomb
Plate thickness [mm]	20.5	7.0	4.3	3.5
Radiation length $[X_0]$	0.23	0.11 (mean)	0.05 (1.0)	<u>0.04</u>
Height	20.5	57	92	44
		Commun	2	1

2. FCC-proton-proton collisions Detector - Baseline

Main solenoid:

- Trackers and calorimeters inside bore, supported by the bore tube
- Muon chambers (for tagging) as outer layer in barrel region

Forward Solenoids (forward dipole is an option):

- Tracker inside solenoid
- Forward calorimeters after forward solenoids
- Enclosed by radiation shield
- Muon station behind

4T/10m-bore Solenoid with 4T Forward Solenoids - baseline

- Main solenoid cold mass 1070 t, forward solenoids 48 t
- Lowest degree of complexity from a cold-mass perspective
- But with significant stray field to be coped with

500

 10^{-}

20

50

100

Distance to IP [m]

200

Super-Conductor for in 4T/10m baseline design solenoids

	Main Solenoid	Forward Solenoid
Current [kA]	30	30
Self-inductance [H]	28	0.9
Layers x turns	8 x 290	6 x 70
Conductor length [km]	83	2 x 7.7
Bending strain [%]	0.57	0.68

Next generation Aluminum-stabilized Rutherford conductors for 30-40 kA:

- Peak field on conductor 4.5 T
- Current sharing temperature 6.45 K
- 1.95 K temperature margin when operating at T_{op} = 4.5 K
- Nickel-doped Aluminum (≥0.1 wt.%): combines good electrical properties (RRR=600) with mechanical properties (146 MPa conductor yield strength [1]), Peak stress 100 MPa.
- Super-Conductors are key to success of any sc magnet, deserves the highest priority!

Cryogenics, Powering and Controls

Main Cryogenics equipment is on surface, not underground

- Intervention on critical installations on surface including Main & Shield refrigerators
- Sending high pressure (20 bar) helium <u>gas</u> down the shaft
- In cavern JT unit producing LiHe and filling dewars
- Distribution of liquid over the main and forward systems
- All coils are conduction cooled using thermosyphon He circulation through pipe work on cold masses
- One cold box (shown) or three cold boxes (baseline), for the main and each of the forward magnets

Power converters and diode/dump are on surface

feeding the coils through SC link down the ≈350m shaft

Control and safety systems (MCS and MSS) on surface

- Baseline Designs for the detector magnet systems for FCC ee⁺, and FCC hh were developed and detailed in CDR chapters.
- FCC-ee IDEA detector: a conceptual design of a 2T/4m free bore / 6m long Solenoid surrounding the tracker was developed, a design using 300 mm radial space and 1 X_o radiation length is doable.
- FCC-hh: a 4 T Main Solenoid, 10 m bore, 20 m long, complemented by two Forward Solenoids, 3.2 T center field in a 5 m bore, 4 m long. Also the option of using forward dipole magnets was developed.
- Cryogenics based on using MR+SR on surface, with 20b/20K into cavern, JT-liquefying in cavern into dewar and thermo-siphon cooling of cold masses.
- No show stoppers identified, but a serious R&D program is required on reinforced superconductors and ultra-transparent cold masses and cryostats.

