Experimental Investigations on Cold Recovery Efficiency of Packed-bed in Cryogenic Energy Storage System

Rohan Dutta, Pavitra Sandilya
Cryogenic Engineering Centre, IIT Kharagpur, India
Acknowledgements

• Authors would like to acknowledge the financial support of IIT Kharagpur for Dr. Rohan Dutta.
 • Prof. P Ghosh
 • Prof. V V Rao
 • Prof. T K Nandi
 • Prof. A. S. Gour
 • Mr. B. Dey, Technical Assistant
• Introduction
• Objective
• Methodology
• Experimental
 • Description of the packed-bed
• Results and discussions
 • Operation under full-load
 • Operation under part-load
• Conclusions
• References
Introduction

• Significant attention on large-scale energy storage due to penetration of renewable energy sources [1]
• Existing large-scale energy storage systems: Pumped-hydro, Compressed Air Energy Storage (CAES) etc. [1,2,3]
• Limitations of such systems:
 • Coupled system
 • Location specific
 • High cost

<table>
<thead>
<tr>
<th>Type of storage</th>
<th>Turnaround efficiency</th>
<th>Location specific</th>
<th>Capital cost (S/kW)</th>
<th>Discharge time at rated power</th>
<th>Power rating (MW)</th>
<th>Lifetime</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pumped hydro</td>
<td>87</td>
<td>Yes</td>
<td>2700-4600</td>
<td>12 hrs</td>
<td>250 to > 1000</td>
<td>30 years</td>
</tr>
<tr>
<td>CAES</td>
<td>54-88</td>
<td>Yes</td>
<td>500-1500</td>
<td>2-24 hrs</td>
<td>15 to 400</td>
<td>35 years</td>
</tr>
<tr>
<td>SMES</td>
<td>90</td>
<td>No</td>
<td>700-2000</td>
<td>100 s to 5-10 hrs</td>
<td>100-200</td>
<td>> 30,000 cycles</td>
</tr>
<tr>
<td>Li-ion batteries</td>
<td>90 (DC)</td>
<td>No</td>
<td>4000-5000</td>
<td>15 mins to several hrs</td>
<td>5</td>
<td>15 years</td>
</tr>
<tr>
<td>CES</td>
<td>> 70</td>
<td>No</td>
<td>400-1500</td>
<td>6-8 hrs</td>
<td>> 100</td>
<td>35 years</td>
</tr>
</tbody>
</table>
Cryogenic Energy Storage (CES): A potential alternative as it is:

- Decoupled system
- With large power generation capability
- With low picking time
- Scalable
- With comparable cost, and
- With mature equipment technologies [2,3]

Three subsystems:

- Charging or the liquefaction process,
- Storage of liquid, and
- Discharging or the power cycle.
CES systems:

- Low turnaround efficiency of around 30% or less [4-5]
- Suggested method to improve the efficiency [5,6]:
 - Storage of available heat/refrigeration using packed-bed thermal storage
 - Use heat of compression by Organic Rankine Cycle to produce waste to power
 - Using industrial waste-heat for superheating in power cycle etc.
Introduction

Packed-bed thermal energy storage:

• A key auxiliary sub-system for recovery of cold from evaporator-superheater in power cycle
 • Used for storing solar thermal energy
 • Common bed materials: Rocks, metals
 • Air as heat transfer fluid [7]
 • Temperature range from room temperature to higher

• A few studies on such energy storage at low temperature
The objectives are to develop the experimental setup and perform the following.

• Measure the temperature profiles inside the packed-bed thermal storage during both charging and discharging processes

• Determine the storage efficiency during full-load and part-load with prolonged standby operation of the system
Methodology

• Performed two sets of experiments:
 1. Full-load operation with bed cut-off temperature of 150 K
 2. Partial charging of the bed or part-load with prolonged standby time and cut-off temperature of 175 K

• Used three non-dimensional parameters:
 • Non-dimensional temperature (θ)
 \[\theta = \frac{T - T_{\text{min}}}{T_{\text{max}} - T_{\text{min}}} \]
 • Non-dimensional length (x/L)
 • Non-dimensional time (t/τ).

• The equation for storage efficiency calculation [8]:
 \[
 \eta_{PB} = \frac{\int_{x_{\text{in}}}^{x_{\text{out}}} \int_{T_{c,L,\text{min}}}^{T_{c,L,\text{max}}} C_s L(T,x)dTdx - \int_{x_{\text{in}}}^{x_{\text{out}}} \int_{T_{c,0,\text{min}}}^{T_{c,0,\text{max}}} C_{s,0}(T,x)dTdx}{L \int_{T_{c,\text{in}}}^{T_{dch,\text{in}}} C_s(T)dT}
 \]
Experimental

- **Equipment:**
 - Packed-bed,
 - Air compressor,
 - A liquid nitrogen dewar,
 - Copper coil heater,
 - Two gate valves (V03, V04)
 - Two needle valves (V02, V05)

- **Instrumentation:**
 - The inlet and outlet pressures (PI01, PI02) using dial gauges and temperatures (TI01, TI02, TI03) using platinum RTDs
 - The temperatures inside the packed-bed including the ullage volume above it using platinum RTDs placed axially interfaced with DT80, dataTaker data acquisition system
 - Uncertainty of the temperature sensors in 78 K to 373 K range: ±2 K
Specifications of the equipment of the process

<table>
<thead>
<tr>
<th>Equipment</th>
<th>Parameter</th>
<th>Value</th>
<th>Equipment</th>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heater</td>
<td>No. of tubes</td>
<td>3/5</td>
<td>Temperature sensor</td>
<td>Type</td>
<td>Pt100</td>
</tr>
<tr>
<td></td>
<td>Tube length</td>
<td>85 cm</td>
<td></td>
<td>Uncertainty</td>
<td>±2 K</td>
</tr>
<tr>
<td></td>
<td>Tube ID/OD</td>
<td>1.5 cm/1.9 cm</td>
<td></td>
<td>Number</td>
<td>7</td>
</tr>
<tr>
<td>Packed-bed</td>
<td>Height</td>
<td>40 cm</td>
<td>Pressure sensor</td>
<td>Type</td>
<td>Dial gauge</td>
</tr>
<tr>
<td></td>
<td>Diameter</td>
<td>15 cm</td>
<td></td>
<td>Range</td>
<td>0-4 barg</td>
</tr>
<tr>
<td></td>
<td>Ullage height</td>
<td>10 cm</td>
<td></td>
<td>Uncertainty</td>
<td>±2%</td>
</tr>
<tr>
<td></td>
<td>Operating pressure</td>
<td>1.5 bar</td>
<td>Gas buffer</td>
<td>Max. pressure</td>
<td>12 barg</td>
</tr>
</tbody>
</table>
Experimental

- **Charging process**: Superheated liquid to 150 K/175 K for cooling down the bed
- **Discharging process**: Pressurized air to warm up the packed-bed to room temperature
Experimental: Process flow diagram with instrumentation

Left: Layout of the experimental setup; Right: Bed height and placement of RTDs inside the vessel
Experimental

Packed-bed

V3 V5 V4 V2

Air compressor

Dewar

Copper coil heater
Experimental: Description of the packed-bed

- Used a vacuum insulated vessel of inner volume 27.3 ltrs. with required bi-directional inlet and outlet ports as packed-bed
 - Bed height (L): 32 cm
 - Bed diameter (D): 15 cm
 - Ullage space: 10 cm
- Granite pebbles as packing material with dimensions between 12.5 mm×12.5 mm and 10 mm×10 mm
 - Average equivalent diameter (d): 11.25 mm.
 - Average density: 2688 kg/m3
 - Mean average heat capacity: 0.7 kJ/kg-K
 - The porosity of the bed (ε): 0.38
Results and discussions

• Conducted experiments on two different operating scenario
 • **Full-load**: Cooling down the entire bed to the bed cut-off temperature of 150 K; Charging time: 6 hrs., Standby: 5 min; Discharging time: 4.5 hrs
 • **Part-load with prolonged standby period**: Cooling down a part of the bed to the bed cut-off temperature of 175 K; Charging time: 2 hrs, Standby: 2 hrs, Discharging time: 2 hrs.

• Constant flow rate to the packed-bed
• Ambient temperature: 31.9°C during full-load, 33°C during part-load
• Compressor discharge pressure: 1.5 bar
Results and discussions: Operation under full-load

Temperature profile inside packed-bed operating under full-load condition with cut-off temperature of 150 K

- Demonstrated the process of storage and utilization with a storage efficiency of 94.71%
- Reasons behind the losses:
 - High heat in-leak due to higher charging time leading to loss of stored refrigeration
 - Variation of flow rate during cooling down reduced heat transfer between fluid and solid periodically
Results and discussions: Operation under full-load

Temperature distribution inside the packed-bed during the charging cycle

Temperature distribution inside the packed-bed during the discharging cycle
Observations

• Typical thermocline profile inside the bed both during charging and discharging processes

• Due to lower flow rate during charging process, lower rate of reduction in temperature in this period

• Overall pressure drop of 30 kPa in the process (including the bed, transfer lines and heater)

• The pressure drop in the bed varied in a range of ±5 kPa
 • Flow rate varied periodically with little effect on the performance of the bed deep inside

• Variation in ullage volume temperature (T_4) after reaching below 190 K
 • Temperature at adjacent to ullage space (T_5) also increased proportionally.
 • After T_4 reached above 190 K, both T_4, T_5 again started reducing
Results and discussions: Operation under part-load

Temperature profile inside packed-bed operating under part-load and prolonged standby condition with cut-off temperature of 175 K

- Non-uniform temperature profile of the bed due to partial cooling,
 - The lower part of the bed 10% warmer than the upper part
- Increase in bed temperature during standby period:
 - Due to the heat in-leak in the bed
 - Due to conduction inside the bed
- Settling of refrigeration
 - Due to presence of a finite temperature gradient inside the bed from the upper part to the lower part of the bed
 - Increased the bed cut-off temperature by 30%.
Results and discussion: Operation under part-load

- Low storage efficiency of 64.57% due to:
 - Settling of refrigeration together
 - Heat in-leak during standby period
- Highest rate of increase in temperature at:
 - Ullage space
 - Inside the bed: Locations adjacent to ullage space
- Pressure drop in the process remained constant at 0.3 bar
- Summary of the two sets of experiments:

<table>
<thead>
<tr>
<th>Mode of operation</th>
<th>T_{max} (K)</th>
<th>T_{min} (K)</th>
<th>Storage efficiency (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Full-load with 5 mins standby</td>
<td>305</td>
<td>154</td>
<td>94.71</td>
</tr>
<tr>
<td>Part-load with 2 hrs standby</td>
<td>306</td>
<td>175</td>
<td>67.57</td>
</tr>
</tbody>
</table>
Conclusions

• Developed an experimental setup to investigate the performance of such packed-bed with granite pebbles
 • Conducted two sets of experiments
• Full-load operation:
 • A storage efficiency as high as 95%
 • Uniform temperature profile inside the entire bed at the end of charging cycle
 • Flow instability, high ullage space temperature fluctuation below 190 K
• Part-load and prolonged standby operation:
 • Storage efficiency reduced to 65%
 • Observed settling of refrigeration from the bottom of the bed to upper locations
• Efforts will be made to identify the effects of such factors by varying the ullage space, using different standby times etc.
THANK YOU!

Any questions?
pavit@cryo.iitkgp.ac.in