Experimental Investigations on Cold Recovery Efficiency of Packed-bed in Cryogenic Energy Storage System

Rohan Dutta, Pavitra Sandilya

Cryogenic Engineering Centre, IIT Kharagpur, India

Acknowledgements

- Authors would like to acknowledge the financial support of IIT Kharagpur for Dr. Rohan Dutta.
- Prof. P Ghosh
- Prof. V V Rao
- Prof. T K Nandi
- Prof. A. S. Gour
- Mr. B. Dey, Technical Assistant

Contents

- Introduction
- Objective
- Methodology
- Experimental
 - Description of the packed-bed
- Results and discussions
 - Operation under full-load
 - Operation under part-load
- Conclusions
- References

- Significant attention on large-scale energy storage due to penetration of renewable energy sources [1]
- Existing large-scale energy storage systems: Pumped-hydro, Compressed Air Energy Storage (CAES) etc. [1,2,3]
- Limitations of such systems:
 - Coupled system
 - Location specific
 - High cost

Type of storage	Turnaround efficiency	Location specific	Capital cost (\$/kW)	Discharge time at rated power	Power rating (MW)	Lifetime
Pumped hydro	87	Yes	2700-4600	12 hrs	250 to > 1000	30 years
CAES	54-88	Yes	500-1500	2-24 hrs	15 to 400	35 years
SMES	90	No	700-2000	100 s to 5-10 hrs	100-200	> 30,000 cycles
Li-ion batteries	90 (DC)	No	4000-5000	15 mins to several hrs	5	15 years
CES	> 70	No	400-1500	6-8 hrs	> 100	35 years

Cryogenic Energy Storage

Cryogenic Energy Storage (CES): A potential alternative as it is:

- Decoupled system
- With large power generation capability
- With low picking time
- Scalable
- With comparable cost, and
- With mature equipment technologies [2,3]
- Three subsystems:
 - Charging or the liquefaction process,
 - Storage of liquid, and
 - Discharging or the power cycle.

CES systems:

- Low turnaround efficiency of around 30% or less [4-5]
- Suggested method to improve the efficiency [5,6]:
 - Storage of available heat/refrigeration using packed-bed thermal storage
 - Use heat of compression by Organic Rankine Cycle to produce waste to power
 - Using industrial waste-heat for superheating in power cycle etc.

Packed-bed thermal energy storage:

- A key auxiliary sub-system for recovery of cold from evaporatorsuperheater in power cycle
 - Used for storing solar thermal energy
 - Common bed materials: Rocks, metals
 - Air as heat transfer fluid [7]
 - Temperature range from room temperature to higher

A few studies on such energy storage at low temperature

Objectives

The objectives are to develop the experimental setup and perform the following.

- Measure the temperature profiles inside the packed-bed thermal storage during both charging and discharging processes
- Determine the storage efficiency during full-load and part-load with prolonged standby operation of the system

Methodology

- Performed two sets of experiments:
 - 1. Full-load operation with bed cut-off temperature of 150 K
 - 2. Partial charging of the bed or part-load with prolonged standby time and cut-off temperature of 175 K
- Used three non-dimensional parameters:
 - Non-dimensional temperature (θ)

$$\theta = \frac{T - T_{min}}{T_{max} - T_{main}}$$

- Non-dimensional length (x/L)
- Non-dimensional time (t/t).
- The equation for storage efficiency calculation [8]:

$$\eta_{PB} = \frac{\int_{x_{in}}^{x_{out}} \int_{T_{c,L,min}}^{T_{c,L,max}} C_{s,L}(T,x) dT dx - \int_{x_{in}}^{x_{out}} \int_{T_{c,0,min}}^{T_{c,0,max}} C_{s,0}(T,x) dT dx}{L \int_{T_{c,in}}^{T_{dch,in}} C_{s}(T) dT}$$

Experimental

Equipment:

- Packed-bed,
- Air compressor,
- A liquid nitrogen dewar,
- Copper coil heater,
- Two gate valves (V03, V04)
- Two needle valves (V02, V05)

Instrumentation:

- The inlet and outlet pressures (PI01,PI02) using dial gauges and temperatures (TI01, TI02, TI03) using platinum RTDs
- The temperatures inside the packed-bed including the ullage volume above it using platinum RTDs placed axially interfaced with DT80, dataTaker data acquisition system
- Uncertainty of the temperature sensors in 78 K to 373 K range: ±2 K

Experimental: Equipment specifications

Specifications of the equipment of the process

Equipment	Parameter	Value	Equipment	Parameter	Value
Heater	No. of tubes Tube length	3/5 85 cm	Temperature sensor	Type Uncertainty	Pt100 ±2 K
Packed-bed	Tube ID/OD Height Diameter Ullage height Operating pressure	1.5 cm/1.9 cm 40 cm 15 cm 10 cm 1.5 bar	Pressure Sensor Gas buffer	Number Type Range Uncertainty Max. pressure	Dial gauge 0-4 barg ±2% 12 barg

Experimental

- Charging process: Superheated liquid to 150 K/175 K for cooling down the bed
- Discharging process: Pressurized air to warm up the packed-bed to room temperature

Experimental: Process flow diagram with instrumentation

Left: Layout of the experimental setup; Right: Bed height and placement of RTDs inside the vessel

Experimental

Experimental: Description of the packed-bed

- Used a vacuum insulated vessel of inner volume 27.3 ltrs. with required bidirectional inlet and outlet ports as packed-bed
 - Bed height (*L*): 32 cm
 - Bed diameter (*D*): 15 cm
 - Ullage space: 10 cm
- Granite pebbles as packing material with dimensions between 12.5 mm×12.5 mm and 10 mm×10 mm
 - Average equivalent diameter (*d*): 11.25 mm.
 - Average density: 2688 kg/m³
 - Mean average heat capacity: 0.7 kJ/kg-K
 - The porosity of the bed (ε): 0.38

Results and discussions

- Conducted experiments on two different operating scenario
 - Full-load: Cooling down the entire bed to the bed cut-off temperature of 150 K; Charging time: 6 hrs., Standby: 5 min; Discharging time: 4.5 hrs
 - Part-load with prolonged standby period: Cooling down a part of the bed to the bed cut-off temperature of 175 K; Charging time: 2 hrs, Standby: 2 hrs, Discharging time: 2 hrs.
- Constant flow rate to the packed-bed
- Ambient temperature: 31.9°C during full-load, 33°C during part-load
- Compressor discharge pressure: 1.5 bar

Results and discussions: Operation under full-load

- Demonstrated the process of storage and utilization with a storage efficiency of 94.71%
- Reasons behind the losses:
 - High heat in-leak due to higher charging time leading to loss of stored refrigeration
 - Variation of flow rate during cooling down reduced heat transfer between fluid and solid periodically

Temperature profile inside packed-bed operating under full-load condition with cut-off temperature of 150 K

Results and discussions: Operation under full-load

Temperature distribution inside the packed-bed during the charging cycle

Temperature distribution inside the packed-bed during the discharging cycle

Results and discussions: Operation under full-load

Observations

- Typical thermocline profile inside the bed both during charging and discharging processes
- Due to lower flow rate during charging process, lower rate of reduction in temperature in this period
- Overall pressure drop of 30 kPa in the process (including the bed, transfer lines and heater)
- The pressure drop in the bed varied in a range of ±5 kPa
 - Flow rate varied periodically with little effect on the performance of the bed deep inside
- Variation in ullage volume temperature (T4) after reaching below 190 K
 - Temperature at adjacent to ullage space (T5) also increased proportionally.
 - After T4 reached above 190 K, both T4, T5 again started reducing

Results and discussions: Operation under part-load

Temperature profile inside packed-bed operating under part-load and prolonged standby condition with cut-off temperature of 175 K

- Non-uniform temperature profile of the bed due to partial cooling,
 - The lower part of the bed 10% warmer than the upper part
- Increase in bed temperature during standby period:
 - Due to the heat in-leak in the bed
 - Due to conduction inside the bed
- Settling of refrigeration
 - Due to presence of a finite temperature gradient inside the bed from the upper part to the lower part of the bed
 - Increased the bed cut-off temperature by 30%.

Results and discussion: Operation under part-load

- Low storage efficiency of 64.57% due to:
 - Settling of refrigeration together
 - Heat in-leak during standby period
- Highest rate of increase in temperature at:
 - Ullage space
 - Inside the bed: Locations adjacent to ullage space
- Pressure drop in the process remained constant at 0.3 bar
- Summary of the two sets of experiments:

Mode of operation T_{max}	\mathbf{x} (K) \mathbf{T}_{\min} (K)	Storage efficiency (%)
	305 154 306 175	94.71 67.57

Conclusions

- Developed an experimental setup to investigate the performance of such packed-bed with granite pebbles
 - Conducted two sets of experiments
- Full-load operation:
 - A storage efficiency as high as 95%
 - Uniform temperature profile inside the entire bed at the end of charging cycle
 - Flow instability, high ullage space temperature fluctuation below 190 K
- Part-load and prolonged standby operation:
 - Storage efficiency reduced to 65%
 - Observed settling of refrigeration from the bottom of the bed to upper locations
- Efforts will be made to identify the effects of such factors by varying the ullage space, using different standby times etc.

References

- [1] Inage S I 2009 International Energy Agency, 90
- [2] Ding Y, Tong L, Zhang P, Li Y, Radcliffe J and Wang L 2016 Chapter 9 Liquid Air Energy Storage ISBN 9780128034408
- [3] Dutta R and Ghosh P 2018 The Society Of Air-Conditioning And Refrigerating Engineers Of Korea, Magazine of the SAREK-47(4) 44-49
- [4] Dutta R, Ghosh P and Chowdhury K 2017 Cryogenics 88 ISSN 00112275
- [5] Peng H, Shan X, Yang Y and Ling X 2018 Applied Energy 211
- [6] Dutta R, Gour A and Sandilya P 2019 NSCS-2019, IIT Bombay, Mumbai, India
- [7] Cascetta M, Cau G, Puddu P and Serra F 2015 Journal of Physics: Conference Series 655 ISSN 17426596
- [8] Huttermann L and Span R 2017 Energy Procedia ISSN 18766102

