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Overview

• Optimizing regenerators using entropy generation analysis have been 
explored.

• Two methods are developed for the calculation of entropy generation 
in regenerators.
• Pore-level CFD model

• Semi-analytical model

• Two evaluation criteria are proposed to evaluate the performance of 
regenerators in terms of entropy generation.
• Modified Bejan number

• Performance Evaluation Factor
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Methods to calculation S_gen
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Pore-level CFD model
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• 2D
• Laminar flow
• Mass flow rate amplitude varies
• D varies 𝑆𝑇 = 2𝑆𝐿 = 2𝐷



PDE form of Entropy Generation
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PDE form of Entropy Generation
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PDE form of Entropy Generation
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• Can be implemented in CFD easily.
• CFD can be time consuming.
• Cannot be directly used in volume averaging method and design calculation.
• Therefore, a semi-analytical form was derived.



Semi-analytical Form – Assumptions 
& Approximations 
• Real gas effect is negligible; 

• The porous material in the control volume is represented with a 
uniform temperature 𝑇𝑤; 

• The temperature and properties of the fluid inside the control volume 
are uniform; 

• The difference of temperature between solid and fluid is small 
compared with the absolute temperature of the fluid; 

• Convective heat exchange rate is uniformly distributed on the solid-
fluid interface.
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Semi-analytical Form of Entropy 
Generation in Regenerators
• A control volume in a regenerator
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Warm ColddT/dx

ሶ𝑆𝑔𝑒𝑛,𝑐𝑜𝑛𝑑
′′′

ሶ𝑆𝑔𝑒𝑛,𝑓𝑙𝑜𝑤
′′′ = ሶ𝑆𝑔𝑒𝑛,𝑐𝑜𝑛𝑣
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Entropy Generation due to 
Conduction
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Entropy Generation due to Flow
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Entropy Generation due to Flow
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Entropy Generation due to Flow

13

ሶ𝑆𝑔𝑒𝑛,𝑓𝑙𝑜𝑤 =
1

ഥ𝑇𝑓
−

1

𝑇𝑤
ඵ

𝐴

𝑞′′ 𝑑𝐴 −
ሶ𝑚

ഥ𝑇𝑓 𝜌𝑓
𝑃𝑜𝑢𝑡 − 𝑃𝑖𝑛

𝐴
𝑞′′ 𝑑𝐴 = ℎ𝑐𝑜𝑛𝑣𝐴(𝑇𝑤 − ഥ𝑇𝑓)

ඵ

𝐴

𝑞′′ 𝑑𝐴 = ሶ𝑚𝐶𝑝Δ𝑥
𝑑𝑇

𝑑𝑥

ሶ𝑆𝑔𝑒𝑛,𝑓𝑙𝑜𝑤
′′′ =

൰(𝑈∞𝜌𝑓 𝐶𝑝
𝑑𝑇
𝑑𝑥

2

ℎ𝑐𝑜𝑛𝑣 ഥ𝑇𝑓
2
Ω

+
𝑈∞𝜌𝑓
ഥ𝑇𝑓

𝑑𝑃

𝑑𝑥

where ℎ𝑐𝑜𝑛𝑣 is the average convective heat transfer coefficient, and Ω
is the wetted solid surface area per unit volume 



Entropy Generation due to Flow
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Entropy Generation due to Flow
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Empirical adjustment using CFD results: 𝛼 = 1 and 𝛽 = 2

Adjusted:



Components of Entropy Generation in 
Regenerators
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Conduction:

Convection:

Viscous dissipation:

• These can be calculated using empirical correlations.



CFD vs. Analytical – Volumetric 
Entropy Generation Rate
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Methods to optimize S_gen
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Modified Bejan Number
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𝐵𝑒 =
< ሶ𝑆𝑔𝑒𝑛,ℎ𝑒𝑎𝑡
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′′′ >+< ሶ𝑆𝑔𝑒𝑛,𝑣𝑖𝑠
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Modified definition:

• Entropy generation by conduction is not considered here. 
Therefore, it can be used when conduction is constant.

• Theoretically, < ሶ𝑆𝑔𝑒𝑛,𝑐𝑜𝑛𝑣
′′′ >+< ሶ𝑆𝑔𝑒𝑛,𝑣𝑖𝑠

′′′ > can be minimized 

when 𝐵𝑒𝑐𝑜𝑛𝑣 = 0.5.



Entropy Generation Rate vs. Modified 
Bejan Number
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• Fluid velocity amplitude: constant.
• D: varies.



Performance Evaluation Factor
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• PEF is entropy generation per unit mass flow rate amplitude per 
unit warm-to-cold temperature difference.

• Lower PEF indicates lower entropy generation and thus better 
performance.

• Can be used when conduction is not constant.



Comprehensive Relationship between 
PEF, Re and D
• CFD result
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Comprehensive Relationship between 
PEF, Re and D
• Semi-analytical result
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Summary

• Two methods, pore-level CFD and semi-analytical calculation, were 
developed to calculate entropy generation.
• Semi-analytical calculation 

• Except for very small  𝑅𝑒 or 𝐷,  < ሶ𝑆𝑔𝑒𝑛,𝑣𝑖𝑠
′′′ > predicted by the analytical 

approximation and CFD simulations are in very good agreement. 

• Can be used when empirical correlations of convective heat transfer and 
friction factor are available;

• Pore-level CFD simulation
• More accurate but more time-consuming. 
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Summary

• Two evaluation criteria have been proposed to evaluate the 
performance of regenerators in terms of entropy generation.
• Modified Bejan number

• Can be used to optimize < ሶ𝑆𝑔𝑒𝑛,𝑐𝑜𝑛𝑣
′′′ >+< ሶ𝑆𝑔𝑒𝑛,𝑣𝑖𝑠

′′′ >;

• Useful when axial conduction is constant;

• Performance Evaluation Factor (PEF)
• Can be used when axial conduction is not constant;

• Can directly compared the performance of regenerators when the mass flow rate 
and warm-to-cold temperature difference are same;
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