HECAL: A cryostat for calibration of hot wires.

S. Kharche¹, J.P. Moro², C. Baudet³, and A. Girard¹

¹ SBT, CEA-UGA Grenoble, France
² STMF, CEA Grenoble, France
³ LEGI, UGA Grenoble, France
1. Introduction: helium for fundamental turbulence
 A few experiments at CEA/SBT
 SHREK
 HEJET

2. Hot wire anemometry

3. HECAL, measurements
Introduction: research on turbulence

Description of the cascade process still under discussion: intermittency (at small scales) not yet understood.

Models assume infinite Reynolds => interest of HELIUM
Helium properties make it the ideal fluid for fundamental studies.
Examples: (1) the SHREK experiment
Examples (2) the Hejet experiment

The jet is generated by the expansion of the liquid helium which is set in movement by a rotating pump, and cooled via a copper heat exchanger.
Measuring velocity fluctuations: Hot Wire Anemometry

\[\frac{L}{\eta} \propto Re^{3/4} \]

\[\Rightarrow \text{Need for very small sensors (}\eta \sim \text{few } \mu\text{m)} \]

Hot wires are the most widespread (and efficient) sensors for measuring the turbulent fluctuations of the velocity,

Principle: convective flux cools the wire & changes its resistance

But: small hot wires are not available commercially

\[\Rightarrow \text{Developments at CEA Grenoble for:} \]

- Small (micron size) sensors
- Reliable sensors.

\[\Rightarrow \text{technique of Wollastone hot wires} \]

\[\Rightarrow \text{Calibration ?} \]
A few equations…

Energy balance :

\[m C \frac{dT_w}{dt} = R_w I^2 - \pi l k_f (T_w - T_a) Nu \]

King’s law: \[Nu = a + b Re^n_w ; \quad n=0.5 \]

dependence of Resistance with Temperature

\[\frac{m C}{\alpha R_0 (A - I^2 + BU^n)} \frac{dR_w}{dt} + R_w = \frac{A + BU^n}{(A - I^2 + BU^n)} R_0 \]

\[\Rightarrow \text{Need for calibration} \]
\[\Rightarrow \text{Determination of the time constant} : \quad \tau = \frac{m C}{\alpha R_0 (A - I^2 + BU^n)} \]
HECAL: Calibration of hot wires
Calibration (continued)
Time constant measurement (CCA operation)

As expected, the time constant decreases as the velocity increases.

<table>
<thead>
<tr>
<th>Velocity (m/s)</th>
<th>Time constant (µs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>22.6</td>
</tr>
<tr>
<td>4.4</td>
<td>20.7</td>
</tr>
<tr>
<td>5.6</td>
<td>18.6</td>
</tr>
</tbody>
</table>
Conclusions, more work…

The Hecal provides a calibration tool to characterize hot wires used in Cryogenic facilities. It works in He-I as well as in He-II

Hot wires exhibit a different behavior in He-II

• Need for a higher current in He-II to get the same resistance
• Calibration curve does not fit King’s law, but is sensitive to velocity
• However, time constant depends also on velocity in He-II

Heat transfer in He II is totally different from what happens in He-I

=> More experiments in HeCal for different He-II temperatures, with different heating currents and velocities.
Acknowledgements

Bernard Rousset and Pantxo Diribarne for fruitful discussions and contributions. Bertrand Rollet (design) and Jérôme Chartier (construction and operation).

This work was supported by:

- the EUHIT European FP7 program (Grant Agreement No. 312778),
- the french ANR project “Ecouturb” (ANR-16-CE30-0016-01),
- the french ANR project “LANEF” (ANR-10-LABX-51-01).

Thank you for your attention....