

The Modelling and Design of an MRI-Compatible Cryosurgical Probe

Logan Kossel¹, John Pfotenhauer¹, Ray Harter²

¹Department of Mechanical Engineering, University of Wisconsin-Madison, ²Marvel Medtech LLC

Motivation

- X-Ray mammography is the most common breast cancer imaging technique, but is 60% less effective when compared to MRI
- Combining MRI with cryosurgery could result in a more effective breast cancer treatment

Photo of a cryosurgical probe

Gas Mixture Properties

- Property data from REFPROP for various pressures
- Interpolation for properties using temperature and pressure
- Viscosity and conductivity calculated using the two-phase volume fraction

Specific enthalpy data generated from REFPROP for the optimized gas mixture

Gas Mixture Optimization:

- Optimized for the operating pressures and temperature range
- Maximum minimum isothermal enthalpy change → Results in the best cooling capacity

 $0.6C_3H_8 + 0.36CH_4 + 0.04N_2$

Thermodynamic Modelling

Model Features:

- Discretized heat exchanger
- Axial conduction parameter
- Two-phase flow correlations
- Gas mixture properties

 $T_{h,i}$ and $T_{c,i}$ known $\Rightarrow R_t \Rightarrow UA$ $\Rightarrow NTU \Rightarrow \varepsilon \Rightarrow q \Rightarrow T_o$

Material dependent heat exchanger hot-side cool down, showing the length required to reach 190 K

Temperature and pressure profiles generated by the model

Input Parameters:

N=20	$D_{\text{inner}} = 1 \text{ mm}$	$D_{\text{outer}} = 2 \text{ mm}$
$P_{\rm in} = 2000000 {\rm Pa}$	$P_{\text{out}} = 101325 \text{ Pa}$	
$T_{\rm h,in} = 293~{\rm K}$	$T_{\rm h,out} = 190 \text{ K}$	

Conclusions

expansion valve

cryoprobe tip

heat exchanger

Schematic of a JT cryoprobe

A cryoprobe within an MRI

material with high thermal

conductivity is desired

Modelling results suggest that a

must be non-metallic

With an optimized gas mixture, an MRI-compatible cryoprobe can deliver 10 W of cooling power at 170 K while remaining a reasonable size. Heat exchanger model includes two-phase flow correlations for mixtures.

compressor

recuperator

 Q_{load}

aftercooler

Future Work:

Optimize heat exchanger geometry
Generate hydrocarbon-free

Generate hydrocarbon-free optimized gas mixture

Results:

$$\dot{q}_{cool}=10\,\mathrm{W}$$
 $\dot{m}=0.2\,\mathrm{g/s}$ $L_{straight}=49.2\,\mathrm{in}$ $L_{helix}=6.4\,\mathrm{in}$