The Modelling and Design of an MRI-Compatible Cryosurgical Probe

Logan Kossel ${ }^{1}$, John Pfotenhauer ${ }^{1}$, Ray Harter ${ }^{2}$
${ }^{1}$ Department of Mechanical Engineering, University of Wisconsin-Madison, ${ }^{2}$ Marvel Medtech LLC
Motivation

- X-Ray mammography is the most common breast cancer imaging technique, but is 60% less effective when compared to MRI
- Combining MRI with cryosurgery could result in a more effective breast cancer treatment

Gas Mixture Properties

- Property data from REFPROP for various pressures
- Interpolation for properties using temperature and pressure
- Viscosity and conductivity calculated using the two-phase volume fraction

Specific enthalpy data generated from REFPROP for the optimized gas mixture

Gas Mixture Optimization:

- Optimized for the operating pressures and temperature range
- Maximum minimum isothermal enthalpy change \rightarrow Results in the best cooling capacity

$$
0.6 C_{3} H_{8}+0.36 C H_{4}+0.04 N_{2}
$$

Thermodynamic Modelling

Results

Input Parameters:

$N=20$	$D_{\text {inner }}=1 \mathrm{~mm}$	$D_{\text {outer }}=2 \mathrm{~mm}$
$P_{\text {in }}=2000000 \mathrm{~Pa}$	$P_{\text {out }}=101325 \mathrm{~Pa}$	
$T_{\mathrm{h}, \text { in }}=293 \mathrm{~K}$	$T_{\mathrm{h}, \text { out }}=190 \mathrm{~K}$	

$N=20$
$P_{\text {out }}=101325 \mathrm{~Pa}$
$T_{\mathrm{h}, \text { in }}=293 \mathrm{~K} \quad T_{\mathrm{h}, \text { out }}=190 \mathrm{~K}$

Conclusions

With an optimized gas mixture, an MRI-compatible cryoprobe can deliver 10 W of cooling power at 170 K while remaining a reasonable size. Heat exchanger model includes two-phase flow correlations for mixtures.

Future Work:
Optimize heat exchanger geometry - Generate hydrocarbon-free optimized gas mixture

Results:
$\dot{q}_{\text {cool }}=10 \mathrm{~W} \quad \dot{m}=0.2 \mathrm{~g} / \mathrm{s} \quad L_{\text {straight }}=49.2$ in
$L_{\text {helix }}=6.4$ in

