Use of Galinstan as a Contact Agent for Additively Manufactured Components in **GE Research Cryogenic Engineering**

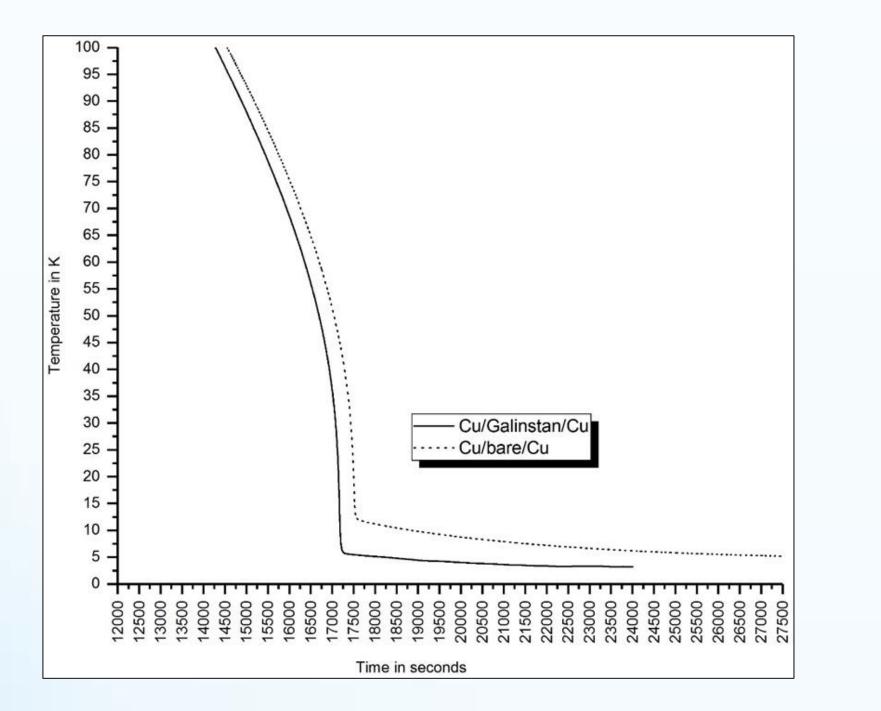

Ti grade 2 3.3 µm Cu-plated

Figure 3: Thermal interface test schematics

Figure 4: Direct mount to heat bus

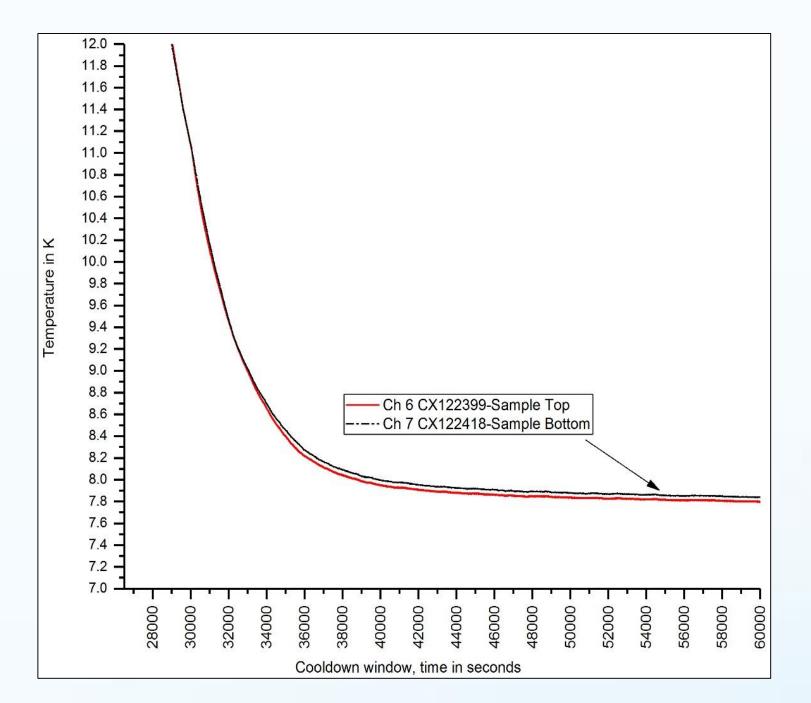
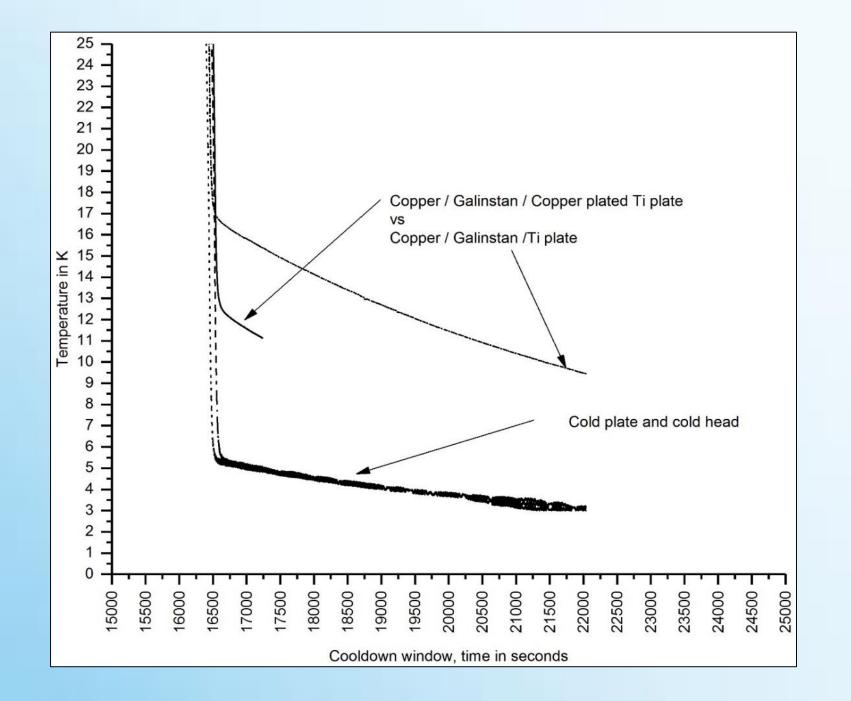

Figure 5: Two samples mounted to heat bus

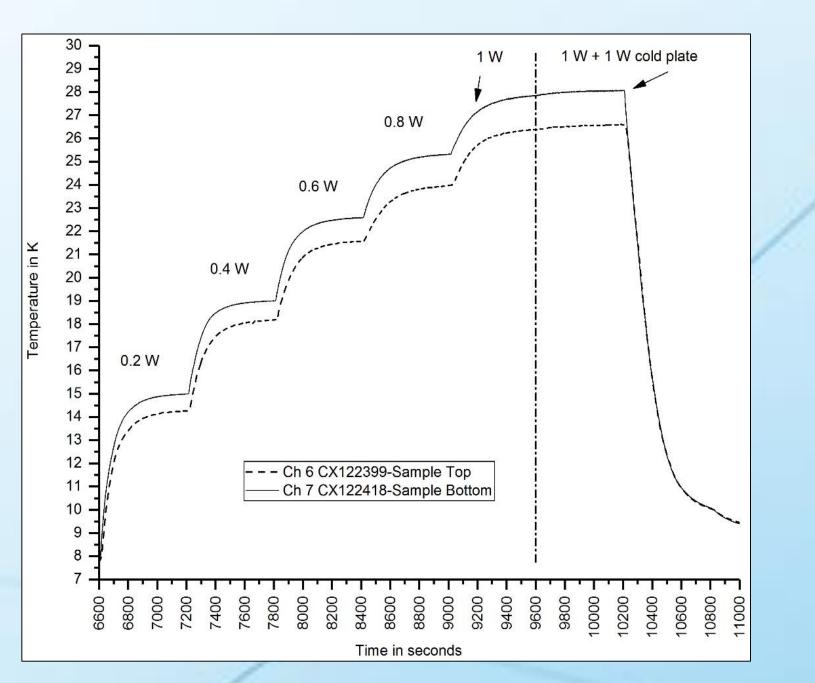
Table 1: Test results for various thermal interface materials

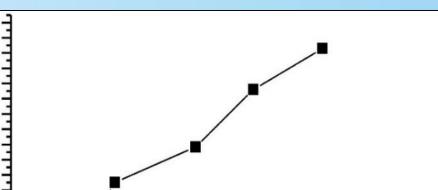
Figure 6: Copper plate sample cooldown with Galinstan compared


	Interface choice	Interposer / bond	dT (K) @ < 4 K	Fail T (K)	Sample geometry mm (pcs)* heat transfer area	Comment	No.	
	Copper / Copper	Bare / dry	1.5	12	111 x 108 x 3.175	Vacuum / – no grease	1	
	Copper / Copper	Galinstan	0	_	111 x 108 x 3.175	GalnSn - wetted	2	
	Copper / Copper	Grease	0.1	7.3	111 x 108 x 3.175	Apiezon [®] N (both sides)	3	
	Copper / Copper	Indium +	0.055	_	25 x 25 x 0.038 (6)	Apiezon [®] N (both sides)	4	
		Grease				In 99.99 %, pure		
	Copper / Copper	Al ₂ O ₃ / Grease	0.145	9.5	25 x 25 x 0.045 (5)	Aluminum oxide tape	5	
						(Apiezon [®] N on both surfaces)		
	Copper / Copper	Graphite +	2.6	15	25 x 25 x 0.16 (5)	Farnell / Element 14	6	
		Grease						
	Copper / Copper	Aluminum +	0	7	25 x 25 x 0.12 (5)	3M 425 Alu 99.6% foil + grease	7	
		Grease						
	Copper / bare	Indium /	0.2	15	20 x 20 x 0.127 (6)	Grade 2 Titanium,	8	
	Titanium	Grease				In 99.99 %, oxidized		
	Copper / Titanium	Grease	—	35	108 x 95.3 x 3.175	Apiezon [®] N	9	
							4.0	
	Copper / Titanium	Galinstan	_	30/1/	108 x 95.3 x 3.175	2 runs, no coating	10	
	Copper / Cu plated	Galinstan	1.0	16	108 x 95.3 x 3.175	Inconel 718	11	
	Inconel							
	Copper / Cu plated	Galinstan	_	12	108 x 95.3 x 3.175	Sputtered Cu single side	12	
	Titanium							
	Cu plated Inconel /	Galinstan	0.03+	-	108 x 95.3 x 3.175	Each plate Cu sputtered (both)	13	
	Cu plated Inconel							
	Cu plated Titanium /	Galinstan	0.40	-	108 x 95.3 x 3.175	Each plate Cu sputtered (both)	14	
	Cu plated Titanium							
	Cu plated Titanium /	Galinstan	0.61	-	108 x 95.3 x 3.175	Each plate Cu sputtered (both)	15	
	Cu plated Inconel ^o							
	Designation in table							

Inconel 718

Figure 8: Cooldown curve of copper coated Inconel 718 samples


to bare / dry surfaces


Figure 7: Graph of sample cooldown with dissimilar materials and Galinstan

5. Key findings

Components can be bonded and separated at room temperature

Figure 9: Heat load measurements with Inconel

without applying any force on the mating surface using Galinstan

Contact can be thermally cycled with repeatable performance

For the 1 inch copper dumbbells we need a force of 6000 N to pull them apart at 100 K

Galinstan can be used for many different cryogenic applications 6. Summary

^o bottom plate Inconel

* 330 N of spring load on sample area

+ 2nd cooldown after warmup to RT

– experiment stopped before final dT was reached, dT too big, timeout

For the given task, Galinstan was the obvious choice for matching materials with very low thermal resistance. However, only materials with the same CTE achieve good bond strength and high thermal conductance at 4 K.

Dissimilar materials even fail when copper coated due to the CTE mismatch. So far, thermal and mechanical properties of Galinstan are still unknown. Given the ease in which a repeatable thermal and mechanical contact can be made and maintained and removed at 16 °C for many applications, this is a suitable alternative to high purity indium, or other solders and greases that require high contact pressures.

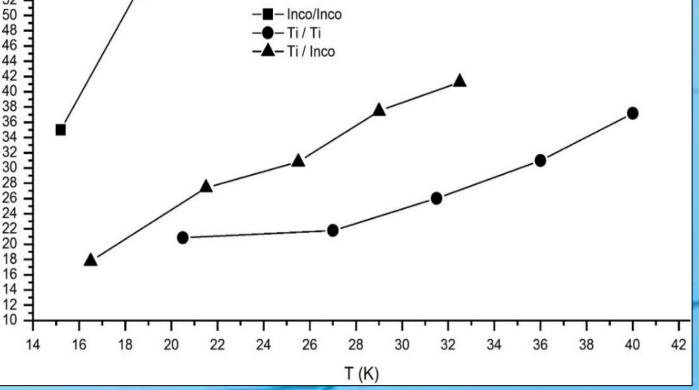


Figure 10: Thermal conductance measurements with Galinstan as interposer and different materials