The low temperature thermal expansion of materials used for superconducting magnets

K. J. Radcliff, R. P. Walsh, and R. P. Reed
Outline

• Introduction
• Definitions
• Dilatometer setup
• Specimen geometry
• Test procedure
• Calibration
• Materials tested
• Summary
Introduction

• Magnet materials experience large temperature ranges and extreme low temperatures, resulting in large thermal stresses.
• Thermal stresses occur due to differential thermal expansion between various materials.
• Proper designs should consider thermal mismatches to prevent premature failures in magnets.
Definitions

- The coefficient of thermal expansion (CTE) is defined to be the linear slope of the thermal expansion vs temperature curve.
 - Units of mm/mm/K (in/in/F)
- Ex: A US manufacture uses CTE number in their strain gages for a particular material the strain gage will be bonded to.
 - SK-06-350-CY vs SK-09-350-CY
 - Steel has a RT CTE of 6e-6 in/in/F
 - Stainless steel has a RT CTE of 9e-6 in/in/F
- Rule of thumb: alphabetical expansions from high TE to low TE.
 - A→B→C→S→T
 - Aluminum, brass, copper, steel, and Ti.
Dilatometer

- Modified vertical tube-type differential dilatometer.
 - Push rods are used to measure expansion (contraction) of the material being tested.
 - Measures a change of length as a function of temperature.
 - Can be used for both high and low temperatures expansion measurements.
- Utilizes the principle of differential expansion between a low temperature reference material (C101 Cu) and the test material.
- Measure two specimens at once.
 - One calibration specimen and one test material.
- Low thermal expansion Ti-6Al-4V push rods.
Micrometers are used to measure displacement. Resolution of ±1e-3mm and an accuracy of ±2e-3mm.

Linear bearings

Dilatometer

Counterweight

Cooling lines to keep constant temperature.

Alignment screws

Specimen

Temperature Sensors

kradcliffe@magnet.fsu.edu
Dilatometer

Room temperature control environmental chamber for micrometers and rod ends.

Cryostat top flange.

Ti tube housing & Ti rods
Specimen Geometry
Testing Procedure

- Two separate holders are used, one for square specimens and one for round.
- Rod alignment is checked.
- Fixture is enclosed in a cryostat and then filled with liquid helium at 4.2 K.
- Data is recorded every 10 seconds.
- Specimens passively warm up to 293 K.
 - About 10 hours.
Evaluation of Temperature Rise Rate

- 0.05 K/min
- 0.5 K/min
- 2.5 K/min
- 8.5 K/min

Temperature, K vs. Time, minutes
Calibration

- C101 copper is used to calibrate the fixture.
- Raw data is zeroed at 293 K.
- Using NIST reference data of thermal expansion for copper is used to determine correction curve for fixture.
- A total of 10 calibrations runs were performed.
- A Polynomial curve fit is then made for thermal expansion of fixture and used to correct for unknown materials.
Calibration Process

- Raw data is subtracted from NIST Cu Ref.

- This correction is done for each copper calibration run to get an average polynomial fit.
Correction Curve Fit

• Average polynomial fit for correction curve.
• Error is ± 3 % or ± 5 μm.
• Assume identical station performance and equilibrium temperature conditions for the two specimen stations.
• Sensitive to vibrations.
Example of Raw Data

- Average of thermal expansion runs.
- Polynomial curve fit is used to get average thermal expansion from raw data.
Thermal Expansion of Various Metals

TE Curve Fit of 3 Cryogenic Metal Alloys

JK2LB – strain gages

JK2LB

N50

Hastelloy

Temperature, K
Thermal Expansion of G-10 CR

0 Deg Unidirectional Rod

Y-dir

X-dir

Normal-dir

Temperature, K

% Expansion
Thermal Expansion of Impregnation Epoxies

![Graph showing thermal expansion of epoxies](image)

- **Stycast L28**
- **CS Epoxy**
- **NHMFL 61**
Measuring Bi2223 and REBCO Coated Conductor

- Stacks of Bi2223 and REBCO coated conductor were made to measure their thermal expansion.
- Ends of the stacks were machined to be flat.
Thermal Expansion of REBCO and Bi2223

Note: 50/40 = 50 μm Hastelloy, 40 μm copper.

REBCO: 50/40
REBCO: 50/100
Bi2223

TE Curve Fit of REBCO Coated Conductor & Bi2223
Thermal Expansion of Materials Tested so Far

TE Curve Fit of REBCO Coated Conductor & Bi2223

Alloys, G-10, REBCO, Bi2223

Epoxies
Summary

• Relatively simply way to measure the thermal expansion of unknown materials.
• A thermal expansion database is being made for magnet designers and other applications.
• Increase accuracy of measurements.
• Improve temperature rise rate.