

The low temperature thermal expansion of materials used for superconducting magnets

K. J. Radcliff, R. P. Walsh, and R. P. Reed

kradcliff@magnet.fsu.edu

1

Outline

- Introduction
- Definitions
- Dilatometer setup
- Specimen geometry
- Test procedure
- Calibration
- Materials tested
- Summary

- Magnet materials experience large temperature ranges and extreme low temperatures, resulting in large thermal stresses.
- Thermal stresses occur due to differential thermal expansion between various materials.
- Proper designs should consider thermal mismatches to prevent premature failures in magnets.

Definitions

- The coefficient of thermal expansion (CTE) is defined to be the linear slope of the thermal expansion vs temperature curve.
 - Units of mm/mm/K (in/in/F)
- Ex: A US manufacture uses CTE number in their strain gages for a particular material the strain gage will be bonded to.
 - SK-06-350-CY vs SK-09-350-CY
 - Steel has a RT CTE of 6e-6 in/in/F
 - Stainless steel ha a RT CTE of 9e-6 in/in/F
- Rule of thumb: alphabetical expansions from high TE to low TE.
 - $A \rightarrow B \rightarrow C \rightarrow S \rightarrow T$
 - Aluminum, brass, copper, steel, and Ti.

Dilatometer

- Modified vertical tube-type differential dilatometer.
 - Push rods are used to measure expansion (contraction) of the material being tested.
 - Measures a change of length as a function of temperature.
 - Can be used for both high and low temperatures expansion measurements.
- Utilizes the principle of differential expansion between a low temperature reference material (C101 Cu) and the test material.
- Measure two specimens at once.
 - One calibration specimen and one test material.
- Low thermal expansion Ti-6Al-4V push rods.

Micrometers are used to measured displacement. Resolution of

Linear bearings

± 2e-3mm.

Dilatometer

Counterweight

Cooling lines to keep constant temperature.

Alignment screws

Specimen

Dilatometer

Room temperature control environmental chamber for micrometers and rod ends.

Cryostat top flange.

Ti tube housing & Ti rods

kradcliff@magnet.fsu.edu

Testing Procedure

- Two separate holders are used, one for square specimens and one for round.
- Rod alignment is checked.
- Fixture is enclosed in a cryostat and then filled with liquid helium at 4.2 K.
- Data is recorded every 10 seconds.
- Specimens passively warm up to 293 K.
 - About 10 hours.

Evaluation of Temperature Rise Rate

Calibration

- C101 copper is used to calibrate the fixture.
- Raw data is zeroed at 293 K.
- Using NIST reference data of thermal expansion for copper is used to determine correction curve for fixture.
- A total of 10 calibrations runs were performed.
- A Polynomial curve fit is then made for thermal expansion of fixture and used to correct for unknown materials.

Calibration Process

 This correction is done for each copper calibration run to get an average polynomial fit.

12

Raw data is

subtracted from

NIST Cu Ref.

Correction Curve Fit

- Error is $\pm 3 \%$ or $\pm 5 \mu m$.
- Assume identical station performance and equilibrium temperature conditions for the two specimen stations.
- Sensitive to vibrations.

- Average of thermal expansion runs.
- Polynomial curve fit is used to get average thermal expansion from raw data.

Thermal Expansion of Various Metals

15

kradcliff@magnet.fsu.edu

Thermal Expansion of Impregnation Epoxies

Measuring Bi2223 and REBCO Coated Conductor

Shrink wrap

- Stacks of Bi2223 and REBCO coated conductor were made to measure their thermal expansion.
- Ends of the stacks were machined to be flat.

Ti cap

REBCO coated conductor stack. ~22 pieces

Thermal Expansion of REBCO and Bi2223

Note: 50/40 = 50 μm Hastelloy, 40 μm copper.

kradcliff@magnet.fsu.edu

Summary

- Relatively simply way to measure the thermal expansion of unknown materials.
- A thermal expansion database is being made for magnet designers and other applications.
- Increase accuracy of measurements.
- Improve temperature rise rate.

21