

ALICE and HPC

costin.grigoras@cern.ch

ALICE Overview

ALICE Repository

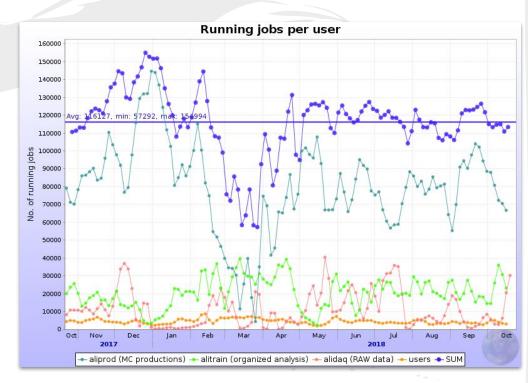
- Production Overview
- Production info
- job Information
- 🛨 🧰 SE Information
- Construction Services
- 🗈 📋 Network Traffic
- 🛨 🧰 FTD Transfers
- CAF Monitoring
 SHUTTLE
- Build system
- HepSpec
- Dynamic charts

This page: bookmark, URL

ALICE Grid resources

Fully federated CPU and Storage

Up to 160000 concurrent jobs @ 80 sites Very heterogeneous resources


115PB of data @ 72 storage elements 50% of the volume is raw data, on tapes

CPU usage

70% used for MC prod CPU eff > 90%

20% data analysis CPU eff ~50%, IO intensive Individual users and organized

10% RAW data reco. CPU eff ~80% Only on To/T1s

Computing model

Anonymous jobs are scheduled on all sites At run time they get a job matching the slot Input data on the nearby storage Or no input data (Monte Carlo) Uploading output to SEs with free space Might not be local (especially if >1 copy requested)

Many built-in assumptions

All of the below is a **standard GRID practice**, we did not invent it to bug the HPC folk

Some common HPC limitations -in regard to our use case of them- discovered the hard way in our attempt of using *Titan*

So, some of the assumptions

Point of presence per site (VoBox)
 Interface with the local WMS (batch or gateway)
 Local monitoring collector & topology discovery

2. Serial, independent jobs
1 CPU core slot, performance within the Grid RMS
At least 2GB of RAM + 3.5GB swap

more assumptions

- 3. Local disk scratch space 10GB For job intermediate files NFS/Shared FS tried with disastrous bad results
- 4. Outgoing network access from jobs
 Communicating with the VoBox, central services
 Direct access to data, wherever it might be
 Both download and upload

even more ...

5. Software distribution through CVMFS Kernel module + (ideally) site local squid
Daily software releases; calibration files
One more item where local disk is required (cache)
Same binaries run on all resources

6. Operating system >= SLC6
+ HepOSLibs metapackage

and others ...

7. Uniform authentication mechanisms Instead encountered keycard auth bound to a physical person, manually submitting jobs

8. 24h job slot duration (default)

And there are probably many others that I haven't thought of but these in particular hurt us.

Our vision for HPC access

Inspired by the successful testing of commercial cloud systems

- **Common interface** for resources access No 'each HPC has its own rules' please Full node allocation is fine
- **Common authentication/authorisation** mechanism (X.509 / GSI)

Other considerations

Generally no need for InfiniBand node interconnect

• **TCP/IP** is **required** for outside communication

Job lifetime - allocation or backfill ?

• If in 'backfill' mode - the payload is restricted in time, we still need reasonable time per core - average must be known for job matching

HPC usage

The simplest use case is MC jobs

• And a good one, it's **70%** of our wall time!

Very limited input data

- Some configuration macros, scripts, calibration
- Binaries ran from **CVMFS**
- Only generated data has to be written out
 - Guaranteed average bandwidth to 'world' of the order of 100kB/s/core

Full use of the HPCs

Local storage is required before any other job can match the requirements

- About **1PB** for **2000 cores** ^(*)
- We will not read data over WAN but as a fallback
 It has to be possible nonetheless
- **Xrootd** is <u>the</u> protocol in our software stack
- ALICE analysis jobs read on average **5MB/s/core** ^(*)Varies with the CPU core performance

Misc

Analysis jobs run on very large data sets

- We group the tasks in trains that only read the input data once
- Limited use for storage caches

Data placement algorithms assume VoBox is representative of the site actual location

• Making the resources appear at a different location is hurting IO performance

Thank you!