
ALICE and HPC
costin.grigoras@cern.ch

ALICE Overview

2

ALICE Grid resources
Fully federated CPU and Storage

Up to 160000 concurrent jobs @ 80 sites
Very heterogeneous resources

115PB of data @ 72 storage elements
50% of the volume is raw data, on tapes

3

CPU usage
70% used for MC prod
 CPU eff > 90%

20% data analysis
 CPU eff ~50%, IO intensive
 Individual users and organized

10% RAW data reco.
 CPU eff ~80%
 Only on T0/T1s

4

Computing model
Anonymous jobs are scheduled on all sites
At run time they get a job matching the slot

Input data on the nearby storage
Or no input data (Monte Carlo)

Uploading output to SEs with free space
Might not be local (especially if >1 copy requested)

5

Many built-in assumptions
All of the below is a standard GRID practice,
we did not invent it to bug the HPC folk

Some common HPC limitations -in regard to our
use case of them- discovered the hard way in our
attempt of using Titan

6

So, some of the assumptions

1. Point of presence per site (VoBox)
Interface with the local WMS (batch or gateway)
Local monitoring collector & topology discovery

2. Serial, independent jobs
1 CPU core slot, performance within the Grid RMS
At least 2GB of RAM + 3.5GB swap

7

more assumptions
3. Local disk scratch space - 10GB

For job intermediate files
NFS/Shared FS tried with disastrous bad results

4. Outgoing network access from jobs
Communicating with the VoBox, central services
Direct access to data, wherever it might be

Both download and upload 8

even more ...
5. Software distribution through CVMFS

Kernel module + (ideally) site local squid
Daily software releases; calibration files
One more item where local disk is required (cache)
Same binaries run on all resources

6. Operating system >= SLC6
+ HepOSLibs metapackage 9

and others ...
7. Uniform authentication mechanisms

Instead encountered keycard auth bound to a physical
person, manually submitting jobs

8. 24h job slot duration (default)

And there are probably many others that I haven’t thought
of but these in particular hurt us.

10

Our vision for HPC access
Inspired by the successful testing of
commercial cloud systems
● Common interface for resources access

No ‘each HPC has its own rules’ please
Full node allocation is fine

● Common authentication/authorisation
mechanism (X.509 / GSI)

11

Other considerations
Generally no need for InfiniBand node
interconnect
● TCP/IP is required for outside communication

Job lifetime - allocation or backfill ?
● If in ‘backfill’ mode - the payload is restricted in time,

we still need reasonable time per core - average must be
known for job matching

12

HPC usage
The simplest use case is MC jobs
● And a good one, it’s 70% of our wall time!

Very limited input data
● Some configuration macros, scripts, calibration
● Binaries ran from CVMFS

Only generated data has to be written out
● Guaranteed average bandwidth to ‘world’ of the order of

100kB/s/core 13

Full use of the HPCs
Local storage is required before any other job can
match the requirements
● About 1PB for 2000 cores (*)
● We will not read data over WAN but as a fallback

○ It has to be possible nonetheless
● Xrootd is the protocol in our software stack
● ALICE analysis jobs read on average 5MB/s/core

○ (*)Varies with the CPU core performance
14

Misc
Analysis jobs run on very large data sets
● We group the tasks in trains that only read the input data

once
● Limited use for storage caches

Data placement algorithms assume VoBox is
representative of the site actual location
● Making the resources appear at a different location is

hurting IO performance
15

Thank you!

16

