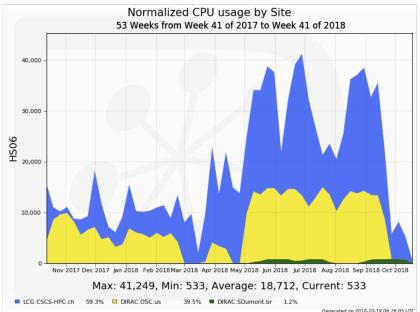
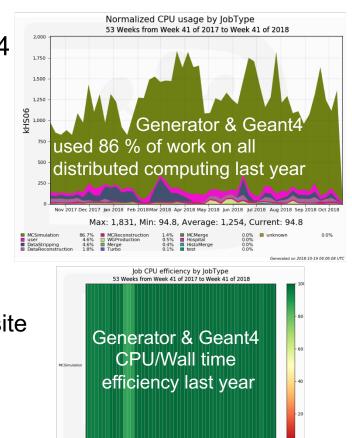
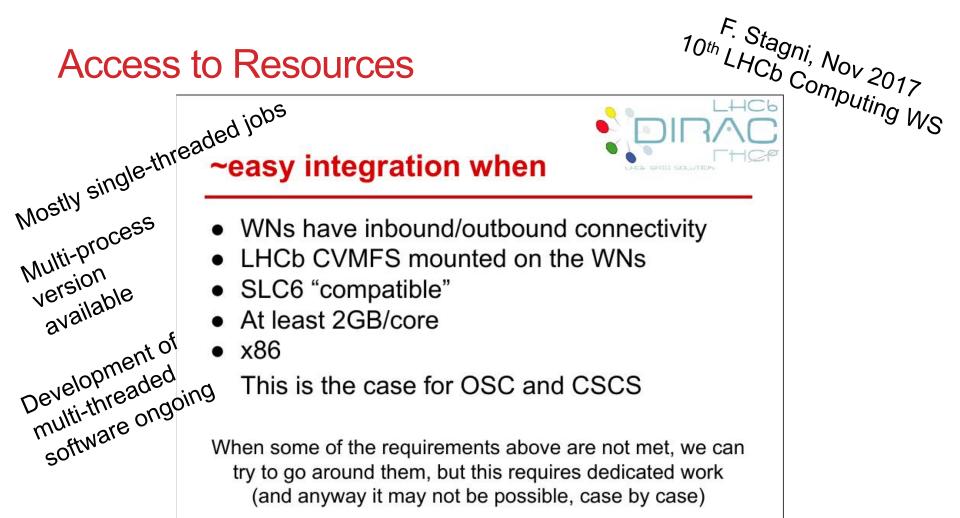
LHCb Usage of HPC Centers


Stefan Roiser PRACE Workshop 22 October 2018

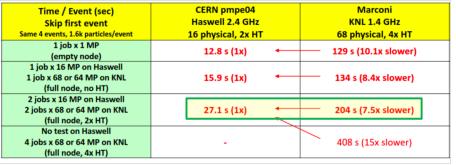
Current Usage


- LHCb is using HPC centers in Switzerland (CSCS) and US (OSC)
 - Expansion planned, e.g. Italy (Cineca) and Brazil (Santos Dumont)
 - Use "standard" intel xeon processors
 - Worker nodes equipped with "CVMFS" files system
 - Whenever possible, access of resources via WLCG interfaces

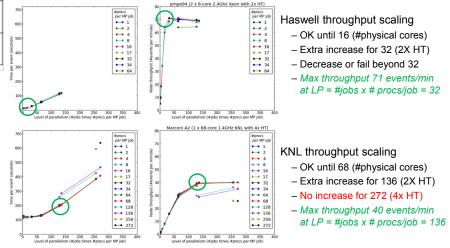

 All LHCb distributed computing resources, including HPCs, are used via the same "LHCbDIRAC" tool for workload and data management

LHCb workflow(s) to deploy on HPCs

- Monte Carlo Simulation Generator & Geant4
 - i.e. particle collision and detector response
 - 80 90 % of work on distributed computing resources spent for Generator & Geant4
 - Simulation can be interrupted by signal
- Generator & Geant4 very simple workflow
 - No input data needed
 - Write output file O(100MB) to "close" storage site every ~ 6 hours
 - High CPU efficiency on intel CPUs



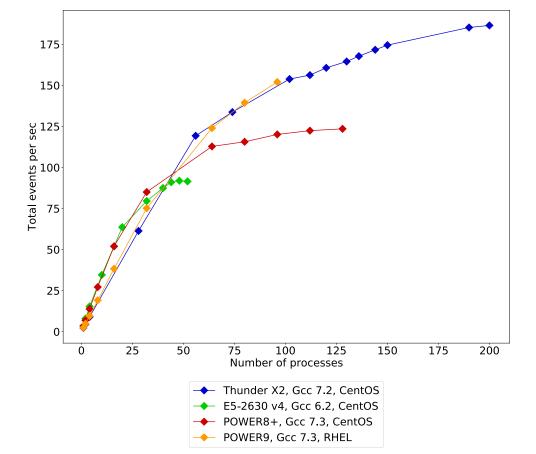
Nov 2017Dec 2017Jan 2018 Feb 2018tar 2018Apr 2018May 2018Jun 2018 Jul 2018 Aug 2018Set 201864 2018


Example: Efficiency on Xeon phi

- Work to understand performance on offered Xeon phi resources
 - Running multi-process simulation
- Time / Event on fully loaded machine factor 7.5 slower
 - Not explainable only by slower core speed

Time/event and throughput: parallel scaling

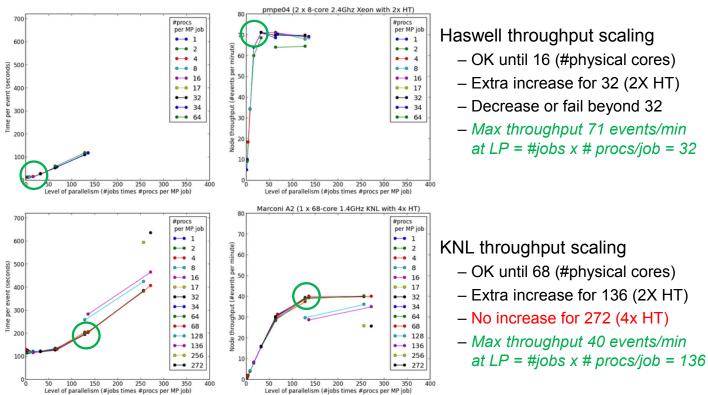
Need MP (at least 4MP) to reach LP=136 on KNL – 136x1MP (and 68x2MP) jobs fail!


A. Valassi – HNSciCloud, BEER, HPCs

Future perspectives

- In LHCb work ongoing to port application framework to multi-threaded
 - Huge reduction in memory consumption
 - Will help on deploying workflows on many core intel friendly architectures
- Porting of software to ARM & Openpower ongoing
 - First versions available. Some tweaking especially for vectorization needed
- Usage of non intel architectures for LHCb workflows is unclear
 - Especially in view of simulation will stay the dominant workflow for LHCb

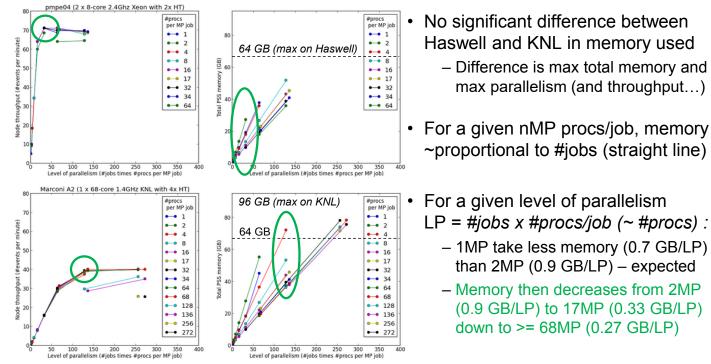
ARM & Power performance



Summary

- LHCb is using and plans to extend usage of HPC centers further
 Predominantly will deploy "simple" simulation workflow
- Usage of intel compatible resources via standard interfaces and environment is straight forward
 - Usage of alternative architectures unclear
 - Slowdown in time to start exploiting resource experienced for non standard interfaces
- Future work of the experiment includes port to multi-threaded software stack

Backup


Time/event and throughput: parallel scaling

Need MP (at least 4MP) to reach LP=136 on KNL - 136x1MP (and 68x2MP) jobs fail!

Total PSS memory

Need MP (at least 4MP) to reach LP=136 on KNL – 136x1MP (and 68x2MP) jobs fail!

Optimal memory at optimal throughput (40 events/min @LP=136) is for 17MP to 68MP

Summary of timing numbers

Time / Event (sec) Skip first event Same 4 events, 1.6k particles/event	CERN pmpe04 Haswell 2.4 GHz 16 physical, 2x HT	Marconi KNL 1.4 GHz 68 physical, 4x HT	CERN olninja024 KNL 1.3 GHz 64 physical, 4x HT
1 job x 1 MP (empty node)	12.8 s (1x) 🗸 🗸	— 129 s (10.1x slower)	162 s (12.7x slower)
1 job x 16 MP on Haswell 1 job x 68 or 64 MP on KNL (full node, no HT)	15.9 s (1x)	—— 134 s (8.4x slower)	196 s (12.3x slower)
2 jobs x 16 MP on Haswell 2 jobs x 68 or 64 MP on KNL (full node, 2x HT)	27.1 s (1x)	204 s (7.5x slower)	305 s (11.2x slower)
No test on Haswell 4 jobs x 68 or 64 MP on KNL (full node, 4x HT)	-	408 s (15x slower)	> 650 s (> 24x slower) Job killed after 5 hours

• Timings for maximum throughput configurations:

- -Haswell (2x 8-core 2xHT): use LP=32 (32x single-process Gauss jobs)
- -KNL (1x 68-core 2xHT): use LP=136 (e.g. 8x 17MP GaussMP jobs)
- -Haswell 27s/evt (71 evts/min) vs. KNL 204s/evt (40 evts/min)
- -KNL 7.5x slower than Haswell (CPU + Turbo speed is ~2x-3x slower)
 •Extra slowdown ~3x on KNL (due to memory access? to be understood)
- For reference: 20M core-hours on Marconi (68-core) is 300k node-hours
 - -This is 33 KNL nodes for one year (1y = 9k h) [i.e. 4.5k SP KNL slots]
 - -Equivalent to 33x40/71=18.6 Haswell [or 4.5k/7.5 = 600 SP Haswell slots]

-Haswell has 32 slots \rightarrow equivalent to 600 SP Haswell slots for one year

Performance - The machines

	ThunderX2	E5-2630 v4	Power8+	Power9
Architecture Platform Compiler	ARM aarch64 GCC 7.2	Intel ×86_64 GCC 6.2	PowerPc ppc64le GCC 7.3	PowerPc ppc64le GCC 7.3
Number logical cores Threads per core	224 4	40 2	128 8	176 4
Cores per socket	28	10	8	4 22
Sockets/NUMA nodes RAM (GB)	2 256	2 64	2 256	2 128
Largest intrinsic set	NEON	AVX2	Altivec	Altivec
CPU performance	top-notch high-tier	cost-efficient mid-tier		