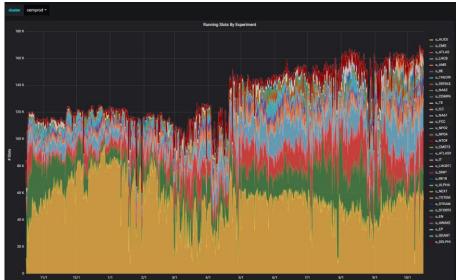
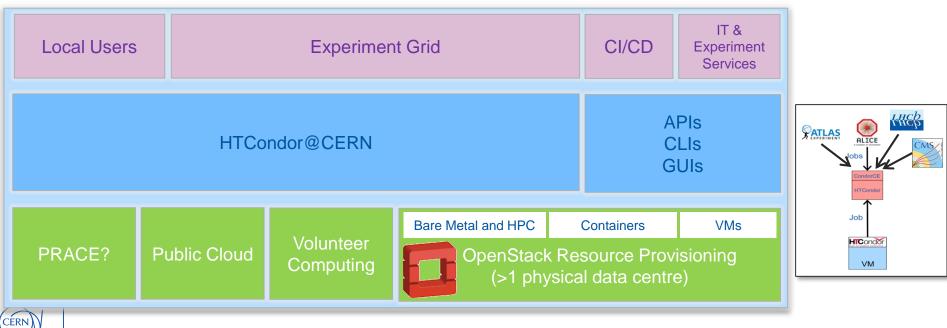


Implementing a common layer for accessing HPC


Gavin McCance, Tim Bell CERN IT Compute and Monitoring Group

HTC Batch System at CERN

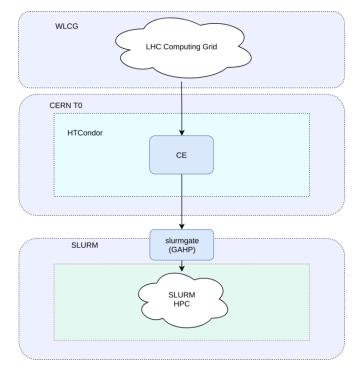
- 200k+ core HTC batch service at CERN based on HTCondor supporting
 - LHC and related
 experiments via Grid
 - Other CERN experiments and departments via shell


Different Resource Types for LHC Workload

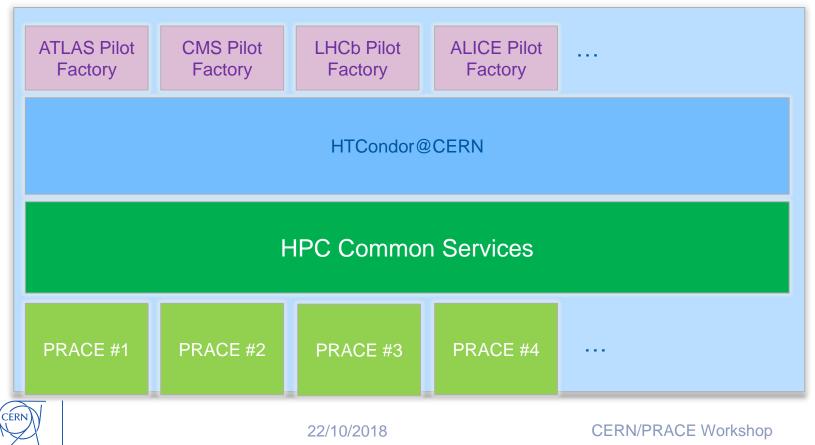
- Standard shared batch farm
- Multiple dedicated batch farms for specific activities (e.g. data recording)
 - Backfilled when not busy with primary activity
- Opportunistic resources
 - "Spare" OpenStack service capacity
 - Backfill of our SLURM resources
 - Unused CPUs of disk-servers (hyperconverged)
 - Volunteer computing via BOINC
- Externally hosted resources
 - Public cloud resources (e.g HNSciCloud and related projects)
 - PRACE centers?

Provisioning Model

• Strategy is to hide complexity from users behind HTCondor


Multiple Integration Patterns Already Used (I)

- External Cloud integration layer is based on Terraform
 - We then provision and configure machines as per our own site
 - Some recent prototypes using federated Kubernetes
 - In both cases, HTCondor daemon on box joins our cluster remotely and takes jobs
- Docker integration start a worker node in a container
 - Docker'd-up HTCondor daemon joins our cluster remotely and takes jobs
 - This is used to integrate CERN disk-server resources (that a different team in IT run)
- Direct Job integration
 - Starts HTCondor daemon inside a (SLURM) job, joins our cluster remotely and takes one job
 - Only lasts for one job, then quits
 - We haven't tried this one, but is the basis for CMS' worldwide job system


Multiple Integration Patterns Already Used (II)

- HTCondor GAHP integration
 - GAHP can re-submit HTCondor jobs to BOINC, SLURM and other clusters
 - Pluggable for different resource types
- This or Direct Job integration is
 probably the best for HPC sites, tbd

Strawman

Advantages

- The aim is to hide the integration complexities from users behind HTCondor
 - Single ops team for experiments and PRACE to interact with: avoids n x m PRACE site/experiment interfaces and processes
 - Reduced development effort: standard experiment pilot factories can be used
 - QoS: expose QoS differences via common properties (I/O requirements, pre-emptible?, etc) and route when resources are available
 - Special resources: specific resource properties (e.g. presence of GPUs) can be exposed to clients to match more suitable jobs, if desired
 - Backfill: we know how to operate this in backfill mode, pre-empting if a more important HPC user comes along
 - Accounting and monitoring: Existing infrastructure can be used for tracking usage

Needs: CVMFS

- Hard to run LHC workload without CVMFS
 - Local site squid caches and per-node daemon
 - If it helps, we have containerised these
 - Non-CVMFS solutions exist .. but are expensive and typically experimentspecific
 - Workload itself can run inside Singularity, typically reading image from CVMFS
- CVMFS potentially interesting for HPC sites anyway
 - we're looking at packaging our HPC apps with Singularity in CVMFS for efficient caching
 - Can we (or delegated owners) run edge services within the HPC sites? Examples would the Data Transfer Nodes at Argonne.

Needs: Firewall

- Somewhat dependent on how we integrate with the site
 - e.g. HTCondorCE -> SLURM GAHP assumes we can see the site batch system over WAN to send jobs there
 - We could run HTCondorCE on the site directly (e.g. containerised) if that's better
- Outgoing connectivity from worker nodes
 - Call-us-back worker-node patterns need this
 - Most WLCG pilot jobs "call home" to get the real experiment payload

Needs: Data Output

- We can steer specific experiment workloads via HTCondor to minimise input data needs
 - e.g. MonteCarlo-Digi-Reco
 - ...but most jobs produce a fairly big output
- On external clouds, we send the output directly from the job to CERN and this works ~well
 - Assumes outgoing connectivity from workers at suitable rate but avoids the site having to run specialised storage

Important: Input Data over WAN?

- Workload dependent (we can choose not run jobs that needs much input data)
- Work going on now inside WLCG and SKA on simple site caches to hide latency
 - Pull directly data from the data lake to avoid site having to explicitly manage data stores
 - Potential option, though typically would involve the site running some simple caching solution (containerised or otherwise)

Conclusions

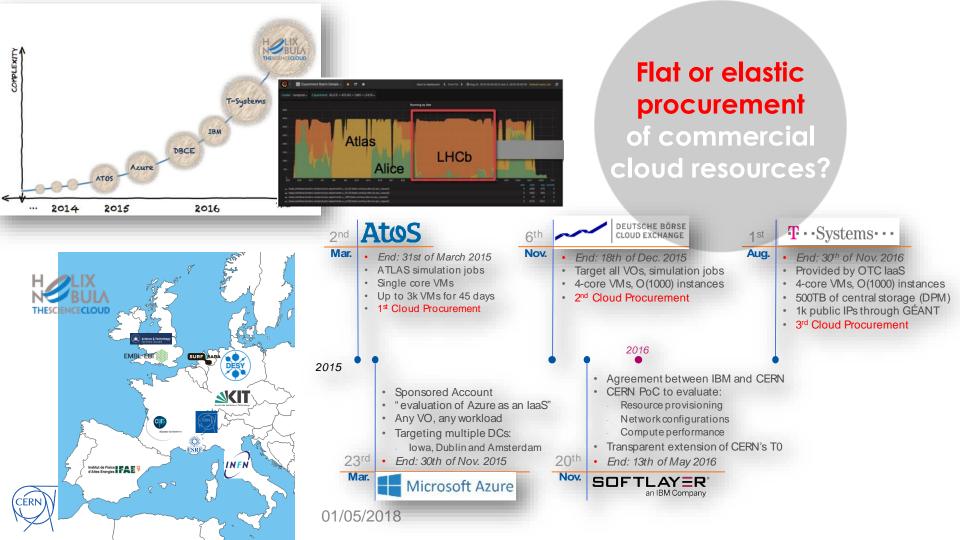
- Through CERN, we're able run WLCG jobs on a variety of external infrastructure
- Our strategy is to hide the complexity from our users and expose everything via our HTCondor@CERN
 - And hide the complexity of HEP from the resource providers
- We have a variety of integration options already in use to achieve this
 - It would be good to agree a common solution across all the PRACE sites

Backup

CERN Data Centre by Numbers

COMPUTING		STORAGE		NETWORK	
Servers (Meyrin)	Cores (Meyrin)	Disks (Meyrin)	Tape Drives	Routers	Star Points
11.5 K	174.3 K	61.9 K	104	250	694
Servers (Wigner)	Cores (Wigner)	Disks (Wigner)	Tape Cartridges	Switches	Wifi Points
3.5 K	56.0 K	29.7 K	33.2 K	4.1 K	1.1 K
Batch Jobs		EOS Active Data Transfers		File Transfer Throughput	
200 K 150 K 100 K 50 K 0		125 K 100 K 75 K 50 K 25 K 0		18 Gbps 13 Gbps 10 Gbps 8 Gbps 5 Gbps 3 Gbps	
10/17 16:00 10/18 00:00 10/18 08:00		16:00 00:00 08:00		16:00 00:00 08:00	

CERN


Source: http://go.web.cern.ch/go/datacentrebynumbers

Accounting

- Since everything passes via CERN, we handle the accounting a give "credit" via WLCG report to sites that provide resources
- Mechanism already in use in HNSciCloud project where CERN runs the "WLCG share" composed of all the WLCG-cores purchased by other WLCG sites from the HNSciCloud vendors

