Collimator emittance consideration for ESSnuSB accumulator

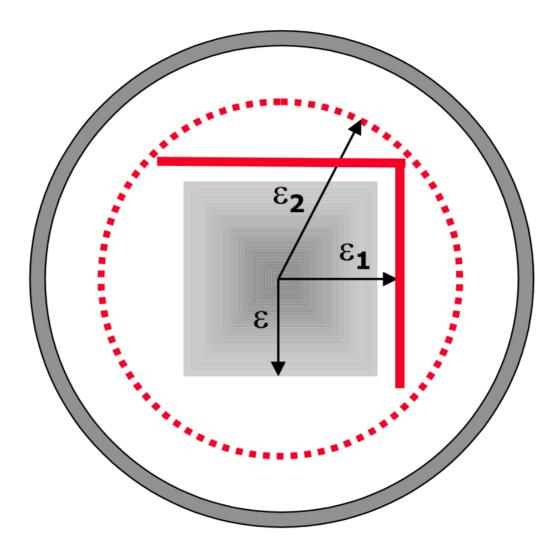
Ye Zou Uppsala University 13 July 2018

Shinji Machida


		J-PARC 0.40	SNS 1.0	SNS 1.3	ESS 2.0	
	J-1 ANC 0.10	0-1 ANC 0.40	5115 1.0	0110 1.0	L33 2.0	
beam power MW	0.4	1.0	1.4	2.8	5.0	
energy GeV	0.18	0.40	1.0	1.3	2.0	
repetition Hz	25	25	60	60	14	
ppb	3.33 x 10 ¹³	8.33 x 10 ¹³	1.5 x 10 ¹⁴	2.5 x 10 ¹⁴	1.1 x 10 ¹⁵	
collimator acceptance*	200 pi	200 pi	300 pi	300 pi	75 pi	
b²g³	0.5011	1.4755	6.750	11.190	27.58	
B _f , F	0.40, 2	0.40, 2	0.25, 2	0.25, 2	0.40, 1 ~ 2	
riangle Q	-0.41	-0.35	-0.15	-0.15	-0.32 ~ -0.64	

As a quite similar accumulator, why SNS choose 300 pi as the collimator emittance?

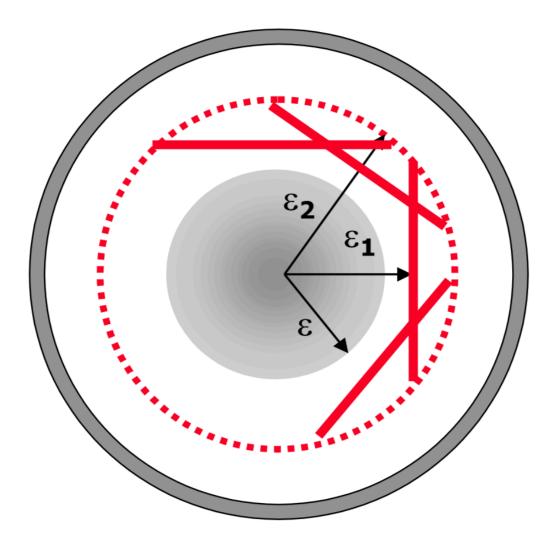
What we should consider about ESSnuSB collimator emittance?


Collimation system for SNS

N. Catalan-Lasheras

- Beam halo is unavoidable and need to be cleaned in the accumulator
- Collimation system: primary and secondary collimators
 - Primary collimator: thin scraper to produce large multiple Coulomb scattering deflection angle with small energy loss
 - Secondary collimators: thick absorber to clean the halo particles
- Clean efficiency should be larger than 90% according to different painting schemes

Correlated painting



In order to avoid primary halo hitting secondary collimators directly, we need

 $\varepsilon_2 > 2\varepsilon_1 > 2\varepsilon$

- ε beam geometric emittance ε_1 primary collimator emittance
- ϵ_2 secondary collimator emittance

Anti-correlated painting

In order to avoid primary halo hitting secondary collimators directly, we need

 $\varepsilon_2 > \varepsilon_1 > \varepsilon$

- ε beam geometric emittance ε_1 primary collimator emittance
- ε_2 secondary collimator emittance

Collimator emittance estimation

	SNS		ESSnuSB75		ESSnuSB100	
	Correlated	Anti-correlated	Correlated	Anti-correlated	Correlated	Anti-correlated
3	120	160	75	75	100	100
<i>ε</i> ₁	140	180	95	95	120	120
<i>ε</i> ₂	280	200	190	115	240	140
Coll. Emitt.	300		200		260	

- ε beam geometric emittance
- ε_1 primary collimator emittance
- ε_2 secondary collimator emittance

Unit: π mm mrad

Correlated painting	$\varepsilon_2 > 2\varepsilon_1 > 2\varepsilon$	
Anti-correlated painting	$\varepsilon_2 > \varepsilon_1 > \varepsilon$	