A Beautiful Way of Going Beyond the Standard Model

Anirban Kundu

University of Calcutta
March 18, 2019, @Heavy Flavours 3, IIT Indore

This is $\mathbf{T}=0$ flavour physics and a sequel to the talk by Nita Sinha

This is $\mathbf{T}=0$ flavour physics and a sequel to the talk by Nita Sinha

- SM passed all experimental tests, last missing piece discovered in 2014

This is $\mathbf{T}=0$ flavour physics and a sequel to the talk by Nita Sinha

- SM passed all experimental tests, last missing piece discovered in 2014
- We all know this is not the ultimate theory
- DM, DE, BAU, m_{ν}, hierarchy

This is $\mathbf{T}=0$ flavour physics and a sequel to the talk by Nita Sinha

- SM passed all experimental tests, last missing piece discovered in 2014
- We all know this is not the ultimate theory
- DM, DE, BAU, m_{ν}, hierarchy
- No luck so far on direct search front
- Have to look for indirect effects
- Quantum corrections induced by the heavy fields

Are there any tensions with the SM?

Yes!!!
 Not yet at the 5σ level to claim definite evidence of BSM Still, worth exploring.

Circumstantial evidence is occasionally very convincing, as when you find
a trout in the milk.

- Arthur Conan Doyle

And there we go into the beautiful world of b-hadrons

Are there any tensions with the SM?

Yes!!!
 Not yet at the 5σ level to claim definite evidence of BSM Still, worth exploring.

Circumstantial evidence is occasionally very convincing, as when you find
a trout in the milk.

- Arthur Conan Doyle

And there we go into the beautiful world of b-hadrons

B-factories: past, present, and future

BaBar@SLAC : $e^{+} e^{-}, 429 \mathrm{fb}^{-1}, 4.7 \times 10^{8} B \bar{B}$ pairs
Belle@KEK : $e^{+} e^{-}$, over $1 \mathrm{ab}^{-1}, 7.72 \times 10^{8} B \bar{B}$ pairs

LHCb : $6.8 \mathrm{fb}^{-1}$ till 2017 ($3.6 \mathrm{fb}^{-1}$ at 13 TeV)

$7 \mathrm{TeV}: \sigma(p p \rightarrow b \bar{b} X)=(89.6 \pm 6.4 \pm 15.5) \mu$ b, scales linearly with \sqrt{s}
ATLAS and CMS also have dedicated flavour physics programme
LHCb:
Upgrade I: $\mathcal{L}_{\text {int }}>50 \mathrm{fb}^{-1}, 2 \times 10^{33} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$
Phase II with HL-LHC: $\mathcal{L}_{\text {int }}>300 \mathrm{fb}^{-1}, 2 \times 10^{34} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$
Belle-II:
$\mathcal{L}_{\text {int }}=50 \mathrm{ab}^{-1}$ in 5 years, can go up even higher

α	$91.6_{-1.1}^{+1.7}$
β direct	$22.14_{-0.67}^{+0.69}$
β indirect	23.9 ± 1.2
β average	$22.51_{-0.40}^{+0.55}$
γ	$65.81_{-1.66}^{+0.99}$

CKM paradigm rules !!! NP has to be subdominant

University or
Caicutta

A few interesting anomalies

Experiment	R(D*)	R(D)
BaBar	$0.332+/-0.024+/-$ 0.018	$0.440+/-0.058$ $+/-0.042$
BELLE	$0.293+/-0.038+/-$ 0.015	$0.375+/-0.064$ $+/-0.026$
BELLE	$0.302+/-0.030+/-$ 0.011	-
LHCb	$0.336+/-0.027+/-$ 0.030	-
BELLE	$0.270+/-0.035+$ 0.028 -0.025	-
LHCb	$0.291+/-0.019+/-$ 0.029	-
Average	$\mathbf{0 . 3 0 6}+/-\mathbf{0 . 0 1 3}+/-$ txt	$\mathbf{0 . 0 0 7}$

$$
R\left(D^{(*)}\right)=\frac{\operatorname{BR}\left(B \rightarrow D^{(*)} \tau \nu\right)}{\operatorname{BR}\left(B \rightarrow D^{(*)} \ell \nu\right)}
$$

		R(D)
D.Bigi, P.Gambino, Phys.Rev. D94 (2016) no.9,094008 [arXiv:1606.08030 [hep-ph]]	$0.299+-0.003$	
F.Bernlochner, Z.Ligeti, M.Papucci, D.Robinson, Phys.Rev. D95 (2017) no.11, 115008 [arXiv:1703.05330 [hep-ph]]	$0.299+-0.003$	$0.257+-0.003$
D.Bigi, P.Gambino, S.Schacht, JHEP 1711 (2017) 061 [arXiv:1707.09509 [hep-ph]]		
S.Jaiswal, S.Nandi, S.K.Patra, JHEP 1712 (2017) 060 [arXiv:1707.09977 [hep-ph]]	$0.260+-0.008$	
Arithmetic average	$0.299+-0.004$	$0.257+-0.005$

2.3σ for $R(D), 3.0 \sigma$ for $R\left(D^{*}\right), 3.78 \sigma$ combined with corr.
University of
Calcutta

Longitudinal polarization fraction for $B \rightarrow D^{*} \tau \nu$

$$
F_{L}=0.457 \pm 0.010(\mathrm{SM}), \quad 0.60 \pm 0.09 \text { (Belle 1903.03102) }
$$

Longitudinal polarization fraction for $B \rightarrow D^{*} \tau \nu$

$$
F_{L}=0.457 \pm 0.010(\mathrm{SM}), \quad 0.60 \pm 0.09 \text { (Belle 1903.03102) }
$$

While we are talking about $b \rightarrow c \tau \nu$

$$
\begin{aligned}
R_{J / \psi} & =\frac{\operatorname{BR}\left(B_{c} \rightarrow J / \psi \tau \nu\right)}{\operatorname{BR}\left(B_{c} \rightarrow J / \psi \ell \nu\right)} \\
& =0.71 \pm 0.17 \pm 0.18(\exp), \quad 0.283 \pm 0.048(\mathrm{SM})
\end{aligned}
$$

Longitudinal polarization fraction for $B \rightarrow D^{*} \tau \nu$

$$
F_{L}=0.457 \pm 0.010(\mathrm{SM}), \quad 0.60 \pm 0.09 \text { (Belle 1903.03102) }
$$

While we are talking about $b \rightarrow c \tau \nu$

$$
\begin{aligned}
R_{J / \psi} & =\frac{\operatorname{BR}\left(B_{c} \rightarrow J / \psi \tau \nu\right)}{\operatorname{BR}\left(B_{c} \rightarrow J / \psi \ell \nu\right)} \\
& =0.71 \pm 0.17 \pm 0.18(\exp), \quad 0.283 \pm 0.048(\mathrm{SM})
\end{aligned}
$$

And the neutral current $b \rightarrow s \ell^{+} \ell^{-}$

$$
R_{K\left(K^{*}\right)}=\frac{\operatorname{BR}\left(B \rightarrow K\left(K^{*}\right) \mu^{+} \mu^{-}\right)}{\operatorname{BR}\left(B \rightarrow K\left(K^{*}\right) e^{+} e^{-}\right)}
$$

Longitudinal polarization fraction for $B \rightarrow D^{*} \tau \nu$

$$
F_{L}=0.457 \pm 0.010(\mathrm{SM}), \quad 0.60 \pm 0.09 \text { (Belle 1903.03102) }
$$

While we are talking about $b \rightarrow c \tau \nu$

$$
\begin{aligned}
R_{J / \psi} & =\frac{\operatorname{BR}\left(B_{c} \rightarrow J / \psi \tau \nu\right)}{\operatorname{BR}\left(B_{c} \rightarrow J / \psi \ell \nu\right)} \\
& =0.71 \pm 0.17 \pm 0.18(\exp), \quad 0.283 \pm 0.048(\mathrm{SM})
\end{aligned}
$$

And the neutral current $b \rightarrow s \ell^{+} \ell^{-}$

$$
R_{K\left(K^{*}\right)}=\frac{\operatorname{BR}\left(B \rightarrow K\left(K^{*}\right) \mu^{+} \mu^{-}\right)}{\operatorname{BR}\left(B \rightarrow K\left(K^{*}\right) e^{+} e^{-}\right)}
$$

e or μ ? $B_{s} \rightarrow \phi \mu^{+} \mu^{-}$is also interesting \cdots

$$
\left.\begin{array}{rl}
R_{K}=0.745_{-0.074}^{+0.090} \pm 0.036 & q^{2} \in[1: 6] \mathrm{GeV}^{2}, \\
R_{K^{*}}^{\text {low }}=0.66_{-0.07}^{+0.11} \pm 0.03 & q^{2} \in[0.045: 1.1] \mathrm{GeV}^{2}, \\
R_{K^{*}}^{\text {central }}=0.69_{-0.07}^{+0.11} \pm 0.05 & q^{2} \in[1.1: 6] \mathrm{GeV}^{2} .
\end{array}\right\} \begin{aligned}
& \left.\frac{d}{d q^{2}} \mathrm{BR}\left(B_{s} \rightarrow \phi \mu \mu\right)\right|_{q^{2} \in[1: 6] \mathrm{GeV}^{2}} \\
& = \begin{cases}\left(2.58_{-0.31}^{+0.33} \pm 0.08 \pm 0.19\right) \times 10^{-8} \mathrm{GeV}^{-2} & \text { (exp.) } \\
(4.81 \pm 0.56) \times 10^{-8} \mathrm{GeV}^{-2} & \text { (SM), }\end{cases}
\end{aligned}
$$

Is there some pattern?

But $B_{s} / B_{d} \rightarrow \mu \mu$ is consistent with the SM
(Only theory errors are from $f_{B / B_{s}}$ and CKM. NLO EW, NNLO QCD, soft photon, large $\Delta \Gamma_{s}$ effects taken into account)

while $B \rightarrow K^{*} \mu \mu$ observable P_{5}^{\prime} shows a deviation

LHCb: two bins deviating by 2.8σ and 3.0σ
Belle confirms with larger uncertainty
CMS and ATLAS: Consistent with both LHCb/Belle and SM, large uncertainties

Effective theory approach

$$
\mathcal{H}_{\mathrm{eff}}=(C K M) \sum_{i} C_{i} O_{i}
$$

Main source of uncertainty: FF in $\langle M| \mathcal{H}_{\text {eff }}|B\rangle$ Ratios are relatively insensitive

Effective theory approach

$$
\mathcal{H}_{\mathrm{eff}}=(C K M) \sum_{i} C_{i} O_{i}
$$

Main source of uncertainty: FF in $\langle M| \mathcal{H}_{\text {eff }}|B\rangle$ Ratios are relatively insensitive

Example: $b \rightarrow s \mu^{+} \mu^{-}$

$$
\mathcal{H}_{\mathrm{eff}}^{\mathrm{SM}}=-\frac{4 G_{F}}{\sqrt{2}} V_{t b} V_{t s}^{*} \sum_{i} C_{i}(\mu) O_{i}(\mu)
$$

with the relevant operators

$$
\begin{aligned}
O_{7} & =\frac{e}{16 \pi^{2}} m_{b}\left(\bar{s} \sigma_{\mu \nu} P_{R} b\right) F^{\mu \nu}, \quad C_{7}=-0.304 \\
O_{9} & =\frac{e^{2}}{16 \pi^{2}}\left(\bar{s} \gamma^{\mu} P_{L} b\right)\left(\bar{\mu} \gamma_{\mu} \mu\right), \quad C_{9}=4.211 \\
O_{10} & =\frac{e^{2}}{16 \pi^{2}}\left(\bar{s} \gamma^{\mu} P_{L} b\right)\left(\bar{\mu} \gamma_{\mu} \gamma_{5} \mu\right), \quad C_{10}=-4.103
\end{aligned}
$$

Top-down:

UV complete theory \rightarrow Get C_{i} at high scale with proper matching \rightarrow Run down to $m_{b} \rightarrow$ Check consistency with data

Examples: leptoquarks, extra Z^{\prime}

Top-down:

UV complete theory \rightarrow Get C_{i} at high scale with proper matching \rightarrow Run down to $m_{b} \rightarrow$ Check consistency with data

Examples: leptoquarks, extra Z^{\prime}

Bottom-up:

Fit data with set of chosen operators \rightarrow Get the corresponding C_{i}

How reliable are the form factors?

- $B \rightarrow K, D$: Only two FF, f_{0} and f_{1}, determined over the entire q^{2}-range from lattice
- $B \rightarrow K^{*}, D^{*}$: Four FF, V, A_{0}, A_{1}, A_{2}, lattice not yet complete, HQET is helpful, higher-order corrections can be estimated

Are there other pitfalls?
 D^{*} is detected as $D \pi$, take finite decay width into consideration
 Reduces tension to 2.2σ
 For $B \rightarrow K^{(*)}$, no estimate for charmonium-dominated bins, have to be removed

How reliable are the form factors?

- $B \rightarrow K, D$: Only two FF, f_{0} and f_{1}, determined over the entire q^{2}-range from lattice
- $B \rightarrow K^{*}, D^{*}$: Four FF, V, A_{0}, A_{1}, A_{2}, lattice not yet complete, HQET is helpful, higher-order corrections can be estimated
- There can be more FF with BSM operators (like tensor)

Are there other pitfalls?
D^{*} is detected as $D \pi$, take finite decay width into consideration
Reduces tension to 2.2σ
[Chavez-Saab and Toledo, 1806.06997]
For $B \rightarrow K^{(*)}$, no estimate for charmonium-dominated bins, have to be removed

- Tension for CC with $\ell=\tau$, comparable with SM tree ($\sim 15 \%$ enhancement in amplitude)
- Tension for CC with $\ell=\tau$, comparable with SM tree ($\sim 15 \%$ enhancement in amplitude)
- Tension for NC with $\ell=\mu$, comparable with SM loop only. Destructive interference needed
- Tension for CC with $\ell=\tau$, comparable with SM tree ($\sim 15 \%$ enhancement in amplitude)
- Tension for NC with $\ell=\mu$, comparable with SM loop only. Destructive interference needed
- Consider a new operator involving τ. Rotate the leptonic (τ, μ) basis to $\left(\tau^{\prime}, \mu^{\prime}\right)$

$$
\tau=\tau^{\prime} \cos \theta+\mu^{\prime} \sin \theta, \quad \nu_{\tau}^{\prime}=\nu_{\tau} \cos \theta+\nu_{\mu} \sin \theta
$$

- If the mixing angle θ is small, $\sin ^{2} \theta$ suppression makes the BSM tree comparable with SM loop

$$
\begin{aligned}
\mathcal{O}_{\mathrm{I}}= & \sqrt{3} A_{1}\left(\bar{Q}_{2 L} \gamma^{\mu} L_{3 L}\right)_{3}\left(\bar{L}_{3 L} \gamma_{\mu} Q_{3 L}\right)_{3} \\
& -2 A_{2}\left(\bar{Q}_{2 L} \gamma^{\mu} L_{3 L}\right)_{1}\left(\bar{L}_{3 L} \gamma_{\mu} Q_{3 L}\right)_{1}
\end{aligned}
$$

- Only 3rd gen leptons, but can rotate to get muons
- Can give a good fit to $R(D), R\left(D^{*}\right), R_{K}, R_{K^{*}}, R_{J / \psi}, \operatorname{BR}\left(B_{s} \rightarrow \phi \mu \mu\right)$, $\operatorname{BR}\left(B_{s} \rightarrow \mu \mu\right)$ and within limits for $b \rightarrow s+$ invisible and $B \rightarrow K^{(*)} \mu \tau$
- Much improved χ^{2} compared to the SM

$$
\chi^{2}=\sum_{i=1}^{8} \frac{\left(\mathcal{O}_{i}^{\text {exp }}-\mathcal{O}_{i}^{\text {th }}\right)^{2}}{\left(\Delta \mathcal{O}_{i}^{\exp }\right)^{2}+\left(\Delta \mathcal{O}_{i}^{\text {th }}\right)^{2}}
$$

- $\chi^{2} /$ d.o.f. $=1.5$ (this model), $6.1(\mathrm{SM})$, with $A_{1}=0.028 / \mathrm{TeV}^{2}$, $A_{2}=-2.90 / \mathrm{TeV}^{2},|\sin \theta|=0.018, C_{9}^{\mathrm{NP}}=-C_{10}^{\mathrm{NP}}=-0.61$
- For these models $C_{9}^{\mathrm{NP}}=-C_{10}^{\mathrm{NP}}$: only LH currents
- $B_{s} \rightarrow \tau^{+} \tau^{-}$gets sizable contribution from C_{10}, not C_{9}
- R_{K} and $R_{K^{*}}$ need at least one of C_{9} and C_{10} to be significant - We need to break $C_{0}=-C_{10}$ - introduce RH currents
- For these models $C_{9}^{\mathrm{NP}}=-C_{10}^{\text {NP }}$: only LH currents
- $B_{s} \rightarrow \tau^{+} \tau^{-}$gets sizable contribution from C_{10}, not C_{9}
- R_{K} and $R_{K^{*}}$ need at least one of C_{9} and C_{10} to be significant
- This is ruled out by $B_{s} \rightarrow \tau^{+} \tau^{-}$(as well as by ΔM_{s})
- We need to break $C_{0}=-C_{10}$ - introduce RH currents

$$
\begin{aligned}
\mathcal{O}_{\mathrm{II}} & =\sqrt{3} A_{1}\left[-\left(Q_{2 L}, Q_{3 L}\right)_{3}\left(L_{3 L}, L_{3 L}\right)_{3}+\frac{1}{2}\left(Q_{2 L}, L_{3 L}\right)_{3}\left(L_{3 L}, Q_{3 L}\right)_{3}\right] \\
& +\sqrt{2} A_{5}\left(Q_{2 L}, Q_{3 L}\right)_{1}\left\{\tau_{R}, \tau_{R}\right\} \\
& =\frac{3 A_{1}}{4}(c, b)\left(\tau, \nu_{\tau}\right)+\frac{3 A_{1}}{4}(s, b)(\tau, \tau)+A_{5}(s, b)\{\tau, \tau\} \\
& +\frac{3 A_{1}}{4}(s, t)\left(\nu_{\tau}, \tau\right)+A_{5}(c, t)\{\tau, \tau\}+\frac{3 A_{1}}{4}(c, t)\left(\nu_{\tau}, \nu_{\tau}\right)
\end{aligned}
$$

with $\{x, y\} \equiv \bar{x}_{R} \gamma^{\mu} y_{R}, \quad(x, y) \equiv \bar{x}_{L} \gamma^{\mu} y_{L} \quad \forall x, y$

Can also play the same game with

$$
\begin{aligned}
\mathcal{O}_{\text {III }} & =-\sqrt{3} A_{1}\left(Q_{2 L}, Q_{3 L}\right)_{3}\left(L_{3 L}, L_{3 L}\right)_{3}+A_{1}\left(Q_{2 L}, Q_{3 L}\right)_{1}\left(L_{3 L}, L_{3 L}\right)_{1} \\
& +\sqrt{2} A_{5}\left(Q_{2 L}, Q_{3 L}\right)_{1}\left\{\tau_{R}, \tau_{R}\right\} \\
& =A_{1}(c, b)\left(\tau, \nu_{\tau}\right)+A_{1}(s, b)(\tau, \tau)+A_{5}(s, b)\{\tau, \tau\} \\
& +A_{1}(s, t)\left(\nu_{\tau}, \tau\right)+A_{1}(c, t)\left(\nu_{\tau}, \nu_{\tau}\right)+A_{5}(c, t)\{\tau, \tau\}
\end{aligned}
$$

Best fit points	Model II	Model III
$\|\sin \theta\|$	0.016	0.016
A_{1} in TeV^{-2}	-3.88	-2.91
A_{5} in TeV^{-2}	-2.61	0.66

[Slightly different fit taking all ~ 160 observables
into account. Also, Model I seems to be allowed (Bhattacharya, Biswas, Calcuttawala, Patra, 1902.02796)]

Something futuristic: $b \rightarrow s+$ invisibles at Belle-II

[Calcuttawala, AK, Nandi, Patra 2016]

- SM: $b \rightarrow s \nu \bar{\nu}$, only penguin and box

(1) Leptons can be R with no neutrino counterpart
(-) The invisibles can be something different!
- SM: $b \rightarrow s \nu \bar{\nu}$, only penguin and box

- Not always related to $b \rightarrow s \ell^{+} \ell^{-}$:
(1) Leptons can be R with no neutrino counterpart
(2) $\epsilon_{a b} \bar{L}_{L}^{a} \gamma^{\mu} Q_{L}^{b}: b \rightarrow \nu, t \rightarrow \ell$
(3) The invisibles can be something different!
- SM: $b \rightarrow s \nu \bar{\nu}$, only penguin and box

- Not always related to $b \rightarrow s \ell^{+} \ell^{-}$:
(1) Leptons can be R with no neutrino counterpart
(2) $\epsilon_{a b} \bar{L}_{L}^{a} \gamma^{\mu} Q_{L}^{b}: b \rightarrow \nu, t \rightarrow \ell$
(3) The invisibles can be something different!
- Observables:
$\mathrm{BR}, d \Gamma / d q^{2}, F_{T}^{\prime}\left(q^{2}\right)$ (neutrinos), $F_{L}^{\prime}\left(q^{2}\right)$ (light scalars)

$$
\mathcal{H}_{\mathrm{eff}}=\frac{4 G_{F}}{\sqrt{2}} V_{t b} V_{t s}^{*} C_{S M}\left[O_{S M}+C_{1}^{\prime} O_{V_{1}}+C_{2}^{\prime} O_{V_{2}}\right]
$$

$$
\begin{aligned}
& O_{S M}=O_{V_{1}}=\left(\bar{s}_{L} \gamma^{\mu} b_{L}\right)\left(\bar{\nu}_{i L} \gamma_{\mu} \nu_{i L}\right), \\
& \\
& O_{V_{2}}=\left(\bar{s}_{R} \gamma^{\mu} b_{R}\right)\left(\bar{\nu}_{i L} \gamma_{\mu} \nu_{i L}\right) . \\
& \operatorname{Br}\left(B \rightarrow K\left(K^{*}\right) \nu \bar{\nu}\right)<1.6(2.7) \times 10^{-5}
\end{aligned}
$$

Detection efficiencies are small (Belle, 1303.3719)

Mode	$N_{\text {tot }}$	$N_{\text {sig }}$	Significance	$\epsilon, 10^{-4}$	Upper limit
$B^{+} \rightarrow K^{+} \nu \bar{\nu}$	43	$13.3_{-6.6}^{+7.4}$ (stat) ± 2.3 (syst)	2.0σ	5.68	$<5.5 \times 10^{-5}$
$B^{0} \rightarrow K_{s}^{0} \nu \bar{\nu}$	4	$1.8_{-2.4}^{+3.3}$ (stat) $\pm 1.0($ syst $)$	0.7σ	0.84	$<9.7 \times 10^{-5}$
$B^{+} \rightarrow K^{*+} \nu \bar{\nu}$	21	$-1.7_{-1.1}^{+1.7}($ stat $) \pm 1.5($ syst $)$	-	1.47	$<4.0 \times 10^{-5}$
$B^{0} \rightarrow K^{* 0} \nu \bar{\nu}$	10	$-2.3_{-3.5}^{+10.2}$ (stat) ± 0.9 (syst)	-	1.44	$<5.5 \times 10^{-5}$

$B \rightarrow K^{*} \nu \bar{\nu}\left(50\right.$ and $\left.2 \mathrm{ab}^{-1}\right)$

$F_{T}, B \rightarrow X_{s} \nu \bar{\nu}\left(50 \mathrm{ab}^{-1}\right)$

It can also be light invisible scalars (DM?)

$$
\begin{equation*}
\mathcal{L}_{b \rightarrow s S S}=C_{S_{1}} m_{b} \bar{s}_{L} b_{R} S^{2}+C_{S_{2}} m_{b} \bar{b}_{L} s_{R} S^{2}+\text { H.c. } \tag{1}
\end{equation*}
$$

Higgs portal DM $-\langle S\rangle=0$, hSS coupling small to evade LHC limits

$B \rightarrow K$ and $B \rightarrow K^{*}$ for $m_{S}=0.5(1.8) \mathrm{GeV}, \mathcal{L}_{\mathrm{int}}=50 \mathrm{ab}^{-1}$

To conclude:

- The CKM paradigm works quite well. BSM CPV needed to explain the baryon asymmetry, but it has to be subleading at least in the B sector (also in K and probably D)
- Flavour physics is the only tool to probe BSM if the scale is beyond the direct reach of LHC

To conclude:

- The CKM paradigm works quite well. BSM CPV needed to explain the baryon asymmetry, but it has to be subleading at least in the B sector (also in K and probably D)
- Flavour physics is the only tool to probe BSM if the scale is beyond the direct reach of LHC
- There are some intriguing anomalies. The pattern is not yet clear but LFU violation is indicated
- The third generation may be the window to BSM.
- Watch out for LHCb and Belle-II for new results, confirmatory tests, and possible surprises!

To conclude:

- The CKM paradigm works quite well. BSM CPV needed to explain the baryon asymmetry, but it has to be subleading at least in the B sector (also in K and probably D)
- Flavour physics is the only tool to probe BSM if the scale is beyond the direct reach of LHC
- There are some intriguing anomalies. The pattern is not yet clear but LFU violation is indicated
- The third generation may be the window to BSM.
- Watch out for LHCb and Belle-II for new results, confirmatory tests, and possible surprises!

> Thank you!

