A Beautiful Way of Going Beyond the Standard Model

Anirban Kundu

University of Calcutta

March 18, 2019, @Heavy Flavours 3, IIT Indore

A. Kundu (Calcutta U) BSM with flavour 18/03/19

This is T = 0 flavour physics and a sequel to the talk by Nita Sinha

SM passed all experimental tests. last missing piece discovered in 20144

A. Kundu (Calcutta U) BSM with flavour 18/03/19 2

This is T = 0 flavour physics and a sequel to the talk by Nita Sinha

- SM passed all experimental tests, last missing piece discovered in 2014
- We all know this is not the ultimate theory
 DM, DE, BAU, m_{\nu}, hierarchy

This is T = 0 flavour physics and a sequel to the talk by Nita Sinha

- SM passed all experimental tests, last missing piece discovered in 2014
- We all know this is not the ultimate theory
 - DM, DE, BAU, m_{ν} , hierarchy
- No luck so far on direct search front
- Have to look for indirect effects
 - Quantum corrections induced by the heavy fields

This is T=0 flavour physics and a sequel to the talk by Nita Sinha

- SM passed all experimental tests, last missing piece discovered in 2014
- We all know this is not the ultimate theory
 - DM, DE, BAU, m_{ν} , hierarchy
- No luck so far on direct search front
- Have to look for indirect effects
 - Quantum corrections induced by the heavy fields

Are there any tensions with the SM?

Yes!!!

Not yet at the 5σ level to claim definite evidence of BSM Still, worth exploring.

Circumstantial evidence is occasionally very convincing, as when you find a trout in the milk.

— Arthur Conan Doyle

And there we go into the beautiful world of b-hadrons

A. Kundu (Calcutta U) BSM with flavour 18/03/19

Are there any tensions with the SM?

Yes!!!

Not yet at the 5σ level to claim definite evidence of BSM Still, worth exploring.

Circumstantial evidence is occasionally very convincing, as when you find a trout in the milk.

— Arthur Conan Doyle

And there we go into the beautiful world of b-hadrons

A. Kundu (Calcutta U) BSM with flavour 18/03/19

B-factories: past, present, and future

BaBar@SLAC :
$$e^+e^-$$
, 429 fb⁻¹, 4.7 \times 10⁸ $B\bar{B}$ pairs

Belle@KEK :
$$e^+e^-$$
, over 1 ab⁻¹, 7.72 × 10⁸ $B\bar{B}$ pairs

LHCb : 6.8 fb⁻¹ till 2017 (3.6 fb⁻¹ at 13 TeV) 7 TeV:
$$\sigma(pp \to b\bar{b}X) = (89.6 \pm 6.4 \pm 15.5)~\mu$$
b, scales linearly with \sqrt{s}

ATLAS and CMS also have dedicated flavour physics programme

LHCb:

Upgrade I: $\mathcal{L}_{\rm int} > 50 \text{ fb}^{-1}$, $2 \times 10^{33} \text{ cm}^{-2} \text{s}^{-1}$

Phase II with HL-LHC: $\mathcal{L}_{int} > 300 \text{ fb}^{-1}$, $2 \times 10^{34} \text{ cm}^{-2} \text{s}^{-1}$

Belle-II:

 $\mathcal{L}_{\mathrm{int}} = 50~\mathrm{ab^{-1}}$ in 5 years, can go up even higher

α	$91.6^{+1.7}_{-1.1}$
β direct β indirect β average	$22.14^{+0.69}_{-0.67} \\ 23.9 \pm 1.2 \\ 22.51^{+0.55}_{-0.40}$
γ	$65.81^{+0.99}_{-1.66}$

CKM paradigm rules !!!
NP has to be subdominant

A few interesting anomalies

Experiment	R(D*)	R(D)
	0.332 +/- 0.024+/- 0.018	0.440 +/- 0.058 +/- 0.042
	0.293 +/- 0.038 +/- 0.015	0.375 +/- 0.064 +/- 0.026
	0.302 +/- 0.030 +/- 0.011	-
	0.336 +/- 0.027 +/- 0.030	-
BELLE	0.270 +/- 0.035 ⁺ 0.028 -0.025	-
LHCb	0.291 +/- 0.019 +/- 0.029	-
Average .txt	0.306 +/- 0.013 +/- 0.007	0.407 +/- 0.039 +/- 0.024

$$R(D^{(*)}) = \frac{BR(B \to D^{(*)} \tau \nu)}{BR(B \to D^{(*)} \ell \nu)}$$

	R(D)	R(D*)
D.Bigi, P.Gambino, Phys.Rev. D94 (2016) no.9, 094008 [arXiv:1606.08030 [hep-ph]]	0.299 +- 0.003	
[F.Bernlochner, Z.Ligeti, M.Papucci, D.Robinson, Phys.Rev. D95 (2017) no.11, 115008 [arXiv:1703.05330 [hep-ph]]	0.299 +- 0.003	0.257 +- 0.003
D.Bigi, P.Gambino, S.Schacht, JHEP 1711 (2017) 061 [arXiv:1707.09509 [hep-ph]]		0.260 +- 0.008
S.Jaiswal, S.Nandi, S.K.Patra, JHEP 1712 (2017) 060 [arXiv:1707.09977 [hep-ph]]	0.299 +- 0.004	0.257 +- 0.005
Arithmetic average	0.299 +- 0.003	0.258 +- 0.005

 2.3σ for R(D), 3.0σ for $R(D^*)$, 3.78σ combined with corr.

Longitudinal polarization fraction for $B o D^* au
u$

$$F_L = 0.457 \pm 0.010 \text{ (SM)}, \quad 0.60 \pm 0.09 \text{ (Belle 1903.03102)}$$

While we are talking about b o c au
u

$$R_{J/\psi} = \frac{\mathrm{BR}(B_c \to J/\psi \, \tau \nu)}{\mathrm{BR}(B_c \to J/\psi \, \ell \nu)}$$

= 0.71 ± 0.17 ± 0.18 (exp), 0.283 ± 0.048 (SM)

Longitudinal polarization fraction for $B \to D^* \tau \nu$

$$F_L = 0.457 \pm 0.010 \text{ (SM)}, \quad 0.60 \pm 0.09 \text{ (Belle 1903.03102)}$$

While we are talking about $b \rightarrow c \tau \nu$

$$R_{J/\psi} = \frac{\mathrm{BR}(B_c \to J/\psi \, \tau \nu)}{\mathrm{BR}(B_c \to J/\psi \, \ell \nu)}$$

= 0.71 \pm 0.17 \pm 0.18 (exp), 0.283 \pm 0.048 (SM)

And the neutral current $b o s \ell^+ \ell^-$

$$R_{K(K^*)} = \frac{\mathrm{BR}(B \to K(K^*)\mu^+\mu^-)}{\mathrm{BR}(B \to K(K^*)e^+e^-)}$$

Longitudinal polarization fraction for $B o D^* au
u$

$$F_L = 0.457 \pm 0.010 \text{ (SM)}, \quad 0.60 \pm 0.09 \text{ (Belle 1903.03102)}$$

While we are talking about $b \rightarrow c \tau \nu$

$$R_{J/\psi} = \frac{\mathrm{BR}(B_c \to J/\psi \, \tau \nu)}{\mathrm{BR}(B_c \to J/\psi \, \ell \nu)}$$

= 0.71 \pm 0.17 \pm 0.18 (exp), 0.283 \pm 0.048 (SM)

And the neutral current $b \rightarrow s \ell^+ \ell^-$

$$R_{K(K^*)} = rac{\mathrm{BR}(B o K(K^*)\mu^+\mu^-)}{\mathrm{BR}(B o K(K^*)e^+e^-)}$$

e or μ ? $B_s \to \phi \mu^+ \mu^-$ is also interesting \cdots

Longitudinal polarization fraction for $B \to D^* \tau \nu$

$$F_L = 0.457 \pm 0.010 \text{ (SM)}, \quad 0.60 \pm 0.09 \text{ (Belle 1903.03102)}$$

While we are talking about $b \rightarrow c \tau \nu$

$$R_{J/\psi} = \frac{\mathrm{BR}(B_c \to J/\psi \, \tau \nu)}{\mathrm{BR}(B_c \to J/\psi \, \ell \nu)}$$

= 0.71 ± 0.17 ± 0.18 (exp), 0.283 ± 0.048 (SM)

And the neutral current $b \rightarrow s \ell^+ \ell^-$

$$R_{K(K^*)} = rac{\mathrm{BR}(B o K(K^*)\mu^+\mu^-)}{\mathrm{BR}(B o K(K^*)e^+e^-)}$$

e or μ ? $B_s \to \phi \mu^+ \mu^-$ is also interesting \cdots

10 / 28

$$R_K = 0.745^{+0.090}_{-0.074} \pm 0.036$$
 $q^2 \in [1:6] \text{ GeV}^2$,
 $R_{K^*}^{\text{low}} = 0.66^{+0.11}_{-0.07} \pm 0.03$ $q^2 \in [0.045:1.1] \text{ GeV}^2$,
 $R_{K^*}^{\text{central}} = 0.69^{+0.11}_{-0.07} \pm 0.05$ $q^2 \in [1.1:6] \text{ GeV}^2$.

$$\frac{d}{dq^2} BR(B_s \to \phi \mu \mu) \Big|_{q^2 \in [1:6] \text{ GeV}^2}$$

$$= \begin{cases} \left(2.58^{+0.33}_{-0.31} \pm 0.08 \pm 0.19\right) \times 10^{-8} \text{ GeV}^{-2} & \text{(exp.)} \\ (4.81 \pm 0.56) \times 10^{-8} \text{ GeV}^{-2} & \text{(SM)}, \end{cases}$$

Is there some pattern?

But $B_s/B_d \to \mu\mu$ is consistent with the SM (Only theory errors are from f_{B/B_s} and CKM. NLO EW, NNLO QCD, soft photon, large $\Delta\Gamma_s$ effects taken into account)

while $B \to K^* \mu \mu$ observable P_5' shows a deviation

12 / 28

LHCb: two bins deviating by 2.8σ and 3.0σ Belle confirms with larger uncertainty CMS and ATLAS: Consistent with both LHCb/Belle and SM, large uncertainties

13 / 28

Effective theory approach

$$\mathcal{H}_{ ext{eff}} = (\textit{CKM}) \sum_{i} \textit{C}_{i}\textit{O}_{i}$$

Main source of uncertainty: FF in $\langle M|\mathcal{H}_{\mathrm{eff}}|B\rangle$ Ratios are relatively insensitive

Example: $b \rightarrow s \mu^+ \mu^-$

$$\mathcal{H}_{\text{eff}}^{\text{SM}} = -\frac{4G_F}{\sqrt{2}} V_{tb} V_{ts}^* \sum_i C_i(\mu) O_i(\mu)$$

with the relevant operators

$$O_{7} = \frac{e}{16\pi^{2}} m_{b} (\bar{s} \sigma_{\mu\nu} P_{R} b) F^{\mu\nu} , \quad C_{7} = -0.304$$

$$O_{9} = \frac{e^{2}}{16\pi^{2}} (\bar{s} \gamma^{\mu} P_{L} b) (\bar{\mu} \gamma_{\mu} \mu) , \quad C_{9} = 4.211$$

$$O_{10} = \frac{e^{2}}{16\pi^{2}} (\bar{s} \gamma^{\mu} P_{L} b) (\bar{\mu} \gamma_{\mu} \gamma_{5} \mu) , \quad C_{10} = -4.103$$

Effective theory approach

$$\mathcal{H}_{ ext{eff}} = (\mathit{CKM}) \sum_{i} C_{i} O_{i}$$

Main source of uncertainty: FF in $\langle M|\mathcal{H}_{\mathrm{eff}}|B\rangle$ Ratios are relatively insensitive

Example: $b \rightarrow s\mu^+\mu^-$

$$\mathcal{H}_{\mathrm{eff}}^{\mathrm{SM}} = -\frac{4G_F}{\sqrt{2}}V_{tb}V_{ts}^*\sum_i C_i(\mu)O_i(\mu)$$

with the relevant operators

$$\begin{array}{lcl} O_7 & = & \frac{e}{16\pi^2} m_b \left(\bar{s} \sigma_{\mu\nu} P_R b \right) F^{\mu\nu} \,, & C_7 = -0.304 \\ \\ O_9 & = & \frac{e^2}{16\pi^2} \left(\bar{s} \gamma^\mu P_L b \right) \left(\bar{\mu} \gamma_\mu \mu \right) \,, & C_9 = 4.211 \\ \\ O_{10} & = & \frac{e^2}{16\pi^2} \left(\bar{s} \gamma^\mu P_L b \right) \left(\bar{\mu} \gamma_\mu \gamma_5 \mu \right) \,, & C_{10} = -4.103 \end{array}$$

Top-down:

UV complete theory \to Get C_i at high scale with proper matching \to Run down to $m_b \to$ Check consistency with data

Examples: leptoquarks, extra Z'

Bottom-up

Fit data with set of chosen operators \rightarrow Get the corresponding C_i

Top-down:

UV complete theory \rightarrow Get C_i at high scale with proper matching \rightarrow Run down to $m_b \rightarrow$ Check consistency with data

Examples: leptoquarks, extra Z'

Bottom-up:

Fit data with set of chosen operators \rightarrow Get the corresponding C_i

How reliable are the form factors?

- $B \to K, D$: Only two FF, f_0 and f_1 , determined over the entire q^2 -range from lattice
- $B \to K^*, D^*$: Four FF, V, A_0, A_1, A_2 , lattice not yet complete, HQET is helpful, higher-order corrections can be estimated
- There can be more FF with BSM operators (like tensor)

Are there other pitfalls?

 D^* is detected as $D\pi$, take finite decay width into consideration

Reduces tension to 2.2σ

Chavez-Saab and Toledo, 1806.06997]

For $B o K^{(*)}$, no estimate for charmonium-dominated bins, have to be removed

How reliable are the form factors?

- B → K, D: Only two FF, f₀ and f₁, determined over the entire q²-range from lattice
- $B \to K^*, D^*$: Four FF, V, A_0, A_1, A_2 , lattice not yet complete, HQET is helpful, higher-order corrections can be estimated
- There can be more FF with BSM operators (like tensor)

Are there other pitfalls?

 D^* is detected as $D\pi$, take finite decay width into consideration

Reduces tension to 2.2σ

[Chavez-Saab and Toledo, 1806.06997]

For $B \to K^{(*)}$, no estimate for charmonium-dominated bins, have to be removed

- Tension for CC with $\ell= au$, comparable with SM tree (\sim 15% enhancement in amplitude)
- Tension for NC with $\ell=\mu$, comparable with SM loop only. Destructive interference needed

- \bullet Tension for CC with $\ell=\tau,$ comparable with SM tree (\sim 15% enhancement in amplitude)
- \bullet Tension for NC with $\ell=\mu,$ comparable with SM loop only. Destructive interference needed
- Consider a new operator involving au. Rotate the leptonic (au,μ) basis to (au',μ')

$$au = au' \cos heta + \mu' \sin heta \, , \quad
u_ au' =
u_ au \cos heta +
u_\mu \sin heta$$

• If the mixing angle θ is small, $\sin^2 \theta$ suppression makes the BSM tree comparable with SM loop

- \bullet Tension for CC with $\ell=\tau,$ comparable with SM tree (\sim 15% enhancement in amplitude)
- \bullet Tension for NC with $\ell=\mu,$ comparable with SM loop only. Destructive interference needed
- Consider a new operator involving au. Rotate the leptonic (au, μ) basis to (au', μ')

$$\tau = \tau' \cos \theta + \mu' \sin \theta \,, \quad \nu_\tau' = \nu_\tau \cos \theta + \nu_\mu \sin \theta \,$$

• If the mixing angle θ is small, $\sin^2\theta$ suppression makes the BSM tree comparable with SM loop

$$\mathcal{O}_{I} = \sqrt{3} A_{1} (\bar{Q}_{2L} \gamma^{\mu} L_{3L})_{3} (\bar{L}_{3L} \gamma_{\mu} Q_{3L})_{3} -2 A_{2} (\bar{Q}_{2L} \gamma^{\mu} L_{3L})_{1} (\bar{L}_{3L} \gamma_{\mu} Q_{3L})_{1}$$

- Only 3rd gen leptons, but can rotate to get muons
- Can give a good fit to R(D), $R(D^*)$, R_K , R_{K^*} , $R_{J/\psi}$, $\mathrm{BR}(B_s \to \phi \mu \mu)$, $\mathrm{BR}(B_s \to \mu \mu)$ and within limits for $b \to s+$ invisible and $B \to K^{(*)} \mu \tau$
- Much improved χ^2 compared to the SM

$$\chi^2 = \sum_{i=1}^8 \frac{\left(\mathcal{O}_i^{\text{exp}} - \mathcal{O}_i^{\text{th}}\right)^2}{\left(\Delta \mathcal{O}_i^{\text{exp}}\right)^2 + \left(\Delta \mathcal{O}_i^{\text{th}}\right)^2}$$

• $\chi^2/d.o.f.=1.5$ (this model), 6.1 (SM), with $A_1=0.028/{\rm TeV^2}$, $A_2=-2.90/{\rm TeV^2}$, $|\sin\theta|=0.018$, $C_9^{\rm NP}=-C_{10}^{\rm NP}=-0.61$

- ullet For these models $C_9^{
 m NP}=-C_{10}^{
 m NP}$: only LH currents
- $B_s o au^+ au^-$ gets sizable contribution from C_{10} , not C_9
- R_K and R_{K^*} need at least one of C_9 and C_{10} to be significant
- This is ruled out by $B_s \to \tau^+ \tau^-$ (as well as by ΔM_s)
- We need to break $C_0 = -C_{10}$ introduce RH currents

$$\mathcal{O}_{II} = \sqrt{3} A_{1} \left[-(Q_{2L}, Q_{3L})_{3} (L_{3L}, L_{3L})_{3} + \frac{1}{2} (Q_{2L}, L_{3L})_{3} (L_{3L}, Q_{3L})_{3} \right]$$

$$+ \sqrt{2} A_{5} (Q_{2L}, Q_{3L})_{1} \{ \tau_{R}, \tau_{R} \}$$

$$= \frac{3 A_{1}}{4} (c, b) (\tau, \nu_{\tau}) + \frac{3 A_{1}}{4} (s, b) (\tau, \tau) + A_{5} (s, b) \{ \tau, \tau \}$$

$$+ \frac{3 A_{1}}{4} (s, t) (\nu_{\tau}, \tau) + A_{5} (c, t) \{ \tau, \tau \} + \frac{3 A_{1}}{4} (c, t) (\nu_{\tau}, \nu_{\tau})$$

with $\{x,y\} \equiv \bar{x}_R \gamma^\mu y_R$, $(x,y) \equiv \bar{x}_L \gamma^\mu y_L \quad \forall \quad x,y$

- For these models $C_9^{\rm NP} = -C_{10}^{\rm NP}$: only LH currents
- $B_s o au^+ au^-$ gets sizable contribution from C_{10} , not C_9
- R_K and R_{K^*} need at least one of C_9 and C_{10} to be significant
- ullet This is ruled out by $B_s o au^+ au^-$ (as well as by ΔM_s)
- We need to break $C_0 = -C_{10}$ introduce RH currents

$$\mathcal{O}_{II} = \sqrt{3} A_{1} \left[-(Q_{2L}, Q_{3L})_{3} (L_{3L}, L_{3L})_{3} + \frac{1}{2} (Q_{2L}, L_{3L})_{3} (L_{3L}, Q_{3L})_{3} \right]$$

$$+ \sqrt{2} A_{5} (Q_{2L}, Q_{3L})_{1} \{ \tau_{R}, \tau_{R} \}$$

$$= \frac{3 A_{1}}{4} (c, b) (\tau, \nu_{\tau}) + \frac{3 A_{1}}{4} (s, b) (\tau, \tau) + A_{5} (s, b) \{ \tau, \tau \}$$

$$+ \frac{3 A_{1}}{4} (s, t) (\nu_{\tau}, \tau) + A_{5} (c, t) \{ \tau, \tau \} + \frac{3 A_{1}}{4} (c, t) (\nu_{\tau}, \nu_{\tau})$$

with
$$\{x,y\} \equiv \bar{x}_R \gamma^{\mu} y_R$$
, $(x,y) \equiv \bar{x}_L \gamma^{\mu} y_L \quad \forall \quad x,y$

Can also play the same game with

$$\mathcal{O}_{\text{III}} = -\sqrt{3} A_1 (Q_{2L}, Q_{3L})_3 (L_{3L}, L_{3L})_3 + A_1 (Q_{2L}, Q_{3L})_1 (L_{3L}, L_{3L})_1 + \sqrt{2} A_5 (Q_{2L}, Q_{3L})_1 \{\tau_R, \tau_R\} = A_1 (c, b) (\tau, \nu_\tau) + A_1 (s, b) (\tau, \tau) + A_5 (s, b) \{\tau, \tau\} + A_1 (s, t) (\nu_\tau, \tau) + A_1 (c, t) (\nu_\tau, \nu_\tau) + A_5 (c, t) \{\tau, \tau\}$$

Best fit points	Model II	Model III
$ {\sf sin} heta $	0.016	0.016
A_1 in TeV $^{-2}$	-3.88	-2.91
A_5 in TeV $^{-2}$	-2.61	0.66

[Slightly different fit taking all ~ 160 observables into account. Also, Model I seems to be allowed. (Bhattacharya, Biswas, Calcuttawala, Patra, 1902.02796)]

Something futuristic: $b \rightarrow s + \text{invisibles}$ at Belle-II

[Calcuttawala, AK, Nandi, Patra 2016]

• SM: $b \rightarrow s \nu \bar{\nu}$, only penguin and box

- Not always related to $b \to s \ell^+ \ell^-$:
 - Leptons can be R with no neutrino counterpart

 - The invisibles can be something different!

• SM: $b \rightarrow s\nu\bar{\nu}$, only penguin and box

- Not always related to $b \to s\ell^+\ell^-$:
 - 1 Leptons can be R with no neutrino counterpart
 - $\bullet \epsilon_{ab} \bar{L}_L^a \gamma^\mu Q_L^b : b \to \nu, t \to \ell$
 - The invisibles can be something different!
- Observables: BR, $d\Gamma/dq^2$, $F'_T(q^2)$ (neutrinos), $F'_I(q^2)$ (light scalars

• SM: $b \rightarrow s\nu\bar{\nu}$, only penguin and box

- Not always related to $b \to s\ell^+\ell^-$:
 - 1 Leptons can be R with no neutrino counterpart
 - $\bullet \epsilon_{ab} \bar{L}_L^a \gamma^\mu Q_L^b \colon b \to \nu, t \to \ell$
 - The invisibles can be something different!
- Observables: BR, $d\Gamma/dq^2$, $F'_T(q^2)$ (neutrinos), $F'_I(q^2)$ (light scalars)

$$\mathcal{H}_{ ext{eff}} = rac{4 \textit{G}_{\textit{F}}}{\sqrt{2}} \textit{V}_{\textit{tb}} \textit{V}_{\textit{ts}}^* \textit{C}_{\textit{SM}} \left[\textit{O}_{\textit{SM}} + \textit{C}_1' \textit{O}_{\textit{V}_1} + \textit{C}_2' \textit{O}_{\textit{V}_2}
ight] \, ,$$

$$\begin{split} \textit{O}_{\textit{SM}} = \textit{O}_{\textit{V}_1} &= \left(\bar{s}_{\textit{L}} \gamma^{\mu} \textit{b}_{\textit{L}} \right) \left(\bar{\nu}_{\textit{iL}} \gamma_{\mu} \nu_{\textit{iL}} \right) \,, \\ \textit{O}_{\textit{V}_2} &= \left(\bar{s}_{\textit{R}} \gamma^{\mu} \textit{b}_{\textit{R}} \right) \left(\bar{\nu}_{\textit{iL}} \gamma_{\mu} \nu_{\textit{iL}} \right) \,. \end{split}$$

$${
m Br}(B o K(K^*) \nu \bar{\nu}) < 1.6(2.7) imes 10^{-5}$$

Detection efficiencies are small (Belle, 1303.3719)

Mode	$N_{ m tot}$	$N_{ m sig}$	Significance	$\epsilon, 10^{-4}$	Upper limit
$B^+ \to K^+ \nu \bar{\nu}$	43	$13.3^{+7.4}_{-6.6}(\mathrm{stat}) \pm 2.3(\mathrm{syst})$	2.0σ	5.68	$< 5.5 \times 10^{-1}$
$B^0 \rightarrow K_s^0 \nu \bar{\nu}$	4	$1.8^{+3.3}_{-2.4}(\mathrm{stat}) \pm 1.0(\mathrm{syst})$	0.7σ	0.84	$< 9.7 \times 10^{-1}$
$B^+ \rightarrow K^{*+} \nu \bar{\nu}$	21	$-1.7^{+1.7}_{-1.1}(\mathrm{stat}) \pm 1.5(\mathrm{syst})$	-	1.47	$<4.0\times10^{-8}$
$B^0 \rightarrow K^{*0} \nu \bar{\nu}$	10	$-2.3^{+10.2}_{-3.5}(stat) \pm 0.9(syst)$	_	1.44	$< 5.5 \times 10^{-5}$

$B \rightarrow K^* \nu \bar{\nu}$ (50 and 2 ab⁻¹)

 F_T , $B o X_s
u ar{
u}$ (50 ab⁻¹)

It can also be light invisible scalars (DM?)

$$\mathcal{L}_{b\to sSS} = C_{S_1} m_b \bar{s}_L b_R S^2 + C_{S_2} m_b \bar{b}_L s_R S^2 + \text{H.c.}$$
 (1)

Higgs portal DM – $\langle S \rangle =$ 0, hSS coupling small to evade LHC limits

B o K and $B o K^*$ for $m_S = 0.5$ (1.8) GeV, $\mathcal{L}_{\mathrm{int}} = 50~\mathrm{ab}^{-1}$

To conclude:

- The CKM paradigm works quite well. BSM CPV needed to explain the baryon asymmetry, but it has to be subleading at least in the B sector (also in K and probably D)
- Flavour physics is the only tool to probe BSM if the scale is beyond the direct reach of LHC
- There are some intriguing anomalies. The pattern is not yet clear but LFU violation is indicated
- The third generation may be the window to BSM
- Watch out for LHCb and Belle-II for new results, confirmatory tests, and possible surprises!

To conclude:

- The CKM paradigm works quite well. BSM CPV needed to explain the baryon asymmetry, but it has to be subleading at least in the B sector (also in K and probably D)
- Flavour physics is the only tool to probe BSM if the scale is beyond the direct reach of LHC
- There are some intriguing anomalies. The pattern is not yet clear but LFU violation is indicated
- The third generation may be the window to BSM.
- Watch out for LHCb and Belle-II for new results, confirmatory tests, and possible surprises!

Thank you!

To conclude:

- The CKM paradigm works quite well. BSM CPV needed to explain the baryon asymmetry, but it has to be subleading at least in the B sector (also in K and probably D)
- Flavour physics is the only tool to probe BSM if the scale is beyond the direct reach of LHC
- There are some intriguing anomalies. The pattern is not yet clear but LFU violation is indicated
- The third generation may be the window to BSM.
- Watch out for LHCb and Belle-II for new results, confirmatory tests, and possible surprises!

Thank you!

