

An overview of recent open heavy flavour results with ALICE at the LHC

Renu Bala, for the ALICE Collaboration
University of Jammu

Heavy Flavour Meet-2019, IIT Indore

Heavy-Ion Collisions

Motivation: To study the properties of nuclear matter at extreme conditions of temperature and energy density

- > Transition to a state where quarks and gluons are deconfined (Quark- Gluon Plasma, QGP)
 - From lattice QCD: $T_C \approx 145-160 \text{ MeV} \rightarrow \varepsilon_C \approx 0.5 \text{ GeV/fm}^3$

- Bazavov et al, PRD90 (2014) 094503
- ☐ Borsanyi et al, JHEP 1009 (2010) 073

Heavy Quarks as QGP Probes

- Charm and beauty quarks: unique probes of the medium
 - ➤ Produced at the very early stage of the collision in partonic scattering processes with large Q²
 - PQCD can be used to calculate initial cross sections
 - Small rate of thermal production in the QGP
 - ➤ Large mass, short formation time
 - > Experience the entire evolution of the medium
 - Interactions with medium constituents don't change the flavor, but can modify the phase-space distribution of heavy quarks
- Heavy quarks interact with the medium
 - Energy loss via radiative and collisional mechanism
 - Heavy quarks provide a benchmark for energy loss models
- Do charm (and beauty) quarks thermalize with the medium and participate in the collective motion?

Heavy Flavours in small collision systems

pp collisions:

- Important to test of perturbative QCD calculations
- \triangleright Production cross section calculated down to $p_T \sim 0$ using the factorization theorem

Reference to study the effects in pA and AA collisions

p-Pb collisions

- Address cold nuclear matter (CNM) effects in the initial and final stage of the collisions
- Collective effects in high multiplicity events as observed in AA collisions?
- Small size QGP?

Heavy flavours in Pb-Pb collisions

Production of HF in AA collisions is expected to scale with the number of nucleon-nucleon collisions (binary scaling)

Observable: Nuclear Modification Factor R_{AA}

$$R_{\rm AA}(p_{\rm T}) = \frac{1}{\langle N_{\rm coll} \rangle} \frac{dN_{\rm AA}/dp_{\rm T}}{dN_{\rm pp}/dp_T} \sim \frac{QCD \text{ medium}}{QCD \text{ vacuum}}$$

Pb-Pb measurement

If no nuclear effects are present $\rightarrow R_{AA}=1$

Interactions with the constituents of the hot, dense and deconfined medium created in the collision can modify $(\rightarrow R_{AA} \neq 1)$ the phase space distribution of heavy quarks

In-medium parton energy loss via elastic collisions and gluon radiation depends on

➤ Medium density, path-length

Dokshitzer and Kharzeev, PLB 519 (2001) 199

- Colour-charge(Casimir effect)
- > parton mass (e.g Dead cone effect)

Heavy flavours in Pb-Pb collisions

Observable: Elliptic Flow (v_2)

- Interaction among medium constituents convert the initial geometrical anisotropy into momentum anisotropy of final-state particles
- Quantified by the 2nd order fourier coefficient

$$\frac{dN}{d\phi} = \frac{N_0}{2\pi} \{ 1 + 2v_2 \cos[2(\phi - \Psi_{RP})] + \dots \}$$

$$v_2 = \langle \cos[2(\phi - \Psi_{RP})] \rangle$$

Carries information on the medium transport properties :

- \succ At low p_{T} : participation in the collective motion and possible thermalisation of heavy quarks in the medium
- \triangleright At high p_T : path-length dependence of energy loss

A Large Ion Collider Experiment (ALICE)

Open heavy flavours with ALICE

Fully reconstructed charmed and baryon mesons via hadronic and semi-leptonic decays

$$\begin{array}{l} D^0 \rightarrow K^‐\pi^+, \ D^+ \rightarrow K^‐\pi^+\pi^+, \ D^{*+} \rightarrow D^0\pi^+, \ D_s^+ \rightarrow \Phi \ \pi^+ \rightarrow K^‐K^+\pi^+, \\ \Lambda_c^+ \rightarrow \pi^+K^‐p, \ \Lambda_c^+ \rightarrow K^0_s \ p, \ \Lambda_c^+ \rightarrow e^+v_e^-\Lambda, \ \Xi_c^{~0} \rightarrow e^+ \, \Xi^‐v_e \end{array}$$

- Invariant mass analysis of fully reconstructed decay topologies displaced from the primary vertex
- Particle identification using TPC and TOF to reduce the background

Partially reconstructed semi-leptonic decays

Electron channel: D, B \rightarrow e[±] + X

- \succ Electron identification using TPC and TOF at low and intermediate $p_{\rm T}$ and EMCAL at high $p_{\rm T}$
- ➤ Background (Dalitz decay of neutral mesons and Y conversions) subtraction via invariant mass analysis of electron pair
- Background (J/Ψ decays and W/Z/Y decays) subtraction via Monte carlo simulation

Muon channel: D, B $\rightarrow \mu^{\pm} + X$

Background (non-HF muons from light-hadron decays, J/Ψ decays and W/Z/Y decays) subtraction via Monte carlo simulation

pp collisions: a benchmark!!

- D-meson cross section at 4 different collision energies: 13 TeV, 8TeV, 7 TeV and 5 TeV
- Cross sections at LHC energies well described by NLO pQCD predictions
- Data tends to sit on the upper side of the FONLL uncertainty band
 - ALICE, arXiv:1901.07979

 ALICE, EPJC77 (2017) 550

- FONLL: JHEP, 1210 (2012) 137
- GM-VFNS: Eur.Phys.J., C72(2012)2082, Nucl. Phys.
- B, 872(2013) 253
- \square LO k_T fact: Phys.Rev., D87 (2013) 094022

D-meson cross section ratios do not show a significant p_T dependence within the experimental uncertainties

 No noticeable difference between fragmentation functions of charm quarks to strange and nonstrange D mesons

D-meson production cross section: energy dependence

D-meson measurement down to p_T =0 at different centre of mass energies and rapidities provide the sensitivity to the gluon PDF at small values of Bjorken x (10⁻⁴-10⁻⁵)

- > Ratio of production cross sections of different D-meson species in pp collisions at \sqrt{s} = 7 TeV and \sqrt{s} = 5 TeV are compatible within uncertainties
 - \triangleright Comparison with FONLL calculation shows consistently an increasing trend as a function of p_T

D-meson production cross section: rapidity dependence

D-meson measurement down to p_T =0 at different centre of mass energies and rapidities provide the sensitivity to the gluon PDF at small values of Bjorken x (10⁻⁴-10⁻⁵)

- ➤ Ratio of D⁰ meson production cross section measured with ALICE (midrapidity) and LHCb (forward rapidity) compatible with FONLL calculations
 - hint of different slopes in data with respect to theoretical predictions

Charmed-baryon production

PLB781 (2018)

First measurement of Ξ_c^0 p_T -differential cross section in pp collisions at the LHC (BR unknown)

- ightharpoonup Combination of $\Lambda_c^+ o p K^- \pi^+$, $\Lambda_c^+ o p K^0_s$, $\Lambda_c^+ o e^+ v_e \Lambda_c^-$
- $\triangleright \Lambda_c^+ p_T$ -differential cross section **underestimated** by NLO theory: GM-VFNS,

POWHEG+PYTHIA

- describe well D mesons
- > Fragmentation tuned to results from lower energy, e⁺e⁻ (GM-VFNS)

Charmed-baryon production

- > Λ_c+/D⁰ and Ξ_c⁰/ D⁰ ratios larger than model predictions (PYTHIA8 with enhanced color reconnection closer to data)
- $\rightarrow \Lambda_c^+/D^0$ ratios compatible in pp and p-Pb collisions
- > Crucial to constrain models of charm hadronization

ALIC

Open heavy-flavour decay electron

Sudipan de

- \triangleright Electrons from c and b(\rightarrow c) decays at mid-rapidity
- Data consistently at the upper edge of FONLL calculation at all energies (2.76, 5.02, 7 and 13 TeV)
- Large reduction of systematic uncertainty in the measurements w.r.t. previous publications (data-driven method to subtract non-HF decay electron background)

p-Pb collisions: the control experiment

Renu Bala, Heavy Flavour Meet-2019, IIT Indore

D-meson Nuclear Modification factor (R_{pPb})

$$R_{\text{pPb}} = \frac{1}{A} \frac{d^2 \sigma_{\text{pPb}}^{\text{promptD}} / dp_{\text{T}} dy}{d^2 \sigma_{\text{pp}}^{\text{promptD}} / dp_{\text{T}} dy}$$

- ightharpoonup D⁰ measured down to $p_T = 0$:
 - > improved precision due to new reference
- R_{pPb} compatible with unity for both non-strange and strange D mesons

No significant modification of D-meson production in p-Pb collisions wrt pp collisions is observed within uncertainties

D-meson Nuclear Modification factor (R_{pPb}) vs Models

Models including:

- > Cold Nuclear Matter (CNM) effects are compatible with data within uncertainties
- \triangleright Incoherent scattering describes the data $p_T > 5$ GeV/c within uncertainties
- \triangleright Small size QGP can describe data at low and intermediate p_T

Data do not favour a suppression larger than 10-15% for $5 < p_T < 12 \text{ GeV/}c$

Charmed baryons R_{pPb}

- ightharpoonup Charmed baryon ho_c R_{pPb} compatible with D-meson R_{pPb} and consistent with unity within uncertainties
- Data well described by the models including CNM effects and small size QGP formation in p-Pb collisions

Heavy-flavour decay electron $R_{\rm pPb}$

III JHEP 1707 (2017) 052

electrons from charm+beauty decays

electrons from beauty decays

Sudipan de

- \triangleright Heavy-flavour hadron decay electron R_{pPb} compatible with unity
- Arr from Run-1 at $\sqrt{s_{NN}} = 5.02$ TeV and Run-II at $\sqrt{s_{NN}} = 8.16$ TeV are compatible within uncertainties \rightarrow no energy dependence within uncertainties
- > Data described by models that include CNM effects

D-meson production in different centrality classes: $Q_{\rm pPb}$

To investigate the high multiplicity p-Pb collisions

- Q_{pPb} in most central (0-10%) and peripheral (60-100%) centrality classes compatible within uncertainties and consistent with unity
- \triangleright Q_{pPb} for D mesons and charged particles agree within uncertainties (slightly different centrality ranges)
- \rightarrow Hint of $Q_{\text{pPb}}>1$ in central 0-10% in $3 < p_T < 8 \text{ GeV/}c$

D-meson production in different centrality classes: Q_{CP}

$$Q_{\text{CP}} = \frac{(d^2 N^{\text{promptD}} / dp_{\text{T}} dy)_{\text{pPb}}^{0-10} / \langle T_{\text{pPb}} \rangle^{0-10}}{(d^2 N^{\text{promptD}} / dp_{\text{T}} dy)_{\text{pPb}}^{60-100} / \langle T_{\text{pPb}} \rangle^{60-100}}$$

$Q_{\rm CP}$ more precise measurement than $Q_{\rm pPb}$

- > independent from pp reference
- some sources of systematic uncertainties cancel in the ratio
- ightharpoonup D meson central to peripheral ratio ($Q_{\rm CP}$) similar to charged particle $Q_{\rm CP}$
- ightharpoonup Hint of $Q_{CP} > 1$ in $3 < p_T < 8$ GeV/c with **1.5** σ
 - Initial or final-state effect?
 - > Radial flow?

ALICE

D-tagged jets in pp and p-Pb collisions

- \triangleright p_T -differential cross section of charged jets with a reconstructed D⁰ meson inside the jet cone in pp and p-Pb collisions
 - ➤ Allow a closer access to charm-parton kinematics
- > POWHEG+PYTHIA6 (Perugia11) describes data within uncertainties

Pb-Pb collisions: To study the medium effects

Renu Bala, Heavy Flavour Meet-2019, IIT Indore

D-meson nuclear modification factor

arXiv:1804.09083

- Strong suppression of D-mesons in Pb-Pb collisions
- increasing with centrality
- Similar suppression between 2.76 and 5.02 TeV measurements (and improved precision in Run-2)
- ➤ Suppression described by model at the two energies → harder spectra and denser medium counterbalance

Comparison of D mesons and light hadrons R_{AA} To investigate the quark mass and color charge dependence $R_{AA}(D) > R_{AA}(\pi^{\pm})$ for $p_T < 8$ GeV/c in 0-10% and 30-50% $R_{AA}(D) \simeq R_{AA}(\pi^{\pm}) \simeq R_{AA}(\text{charged particles})$ in 60-80% and for

 $R_{AA}(D) \simeq R_{AA}(\pi^{\pm}) \simeq R_{AA}$ (charged particles) in 60-80% and for $p_T > 8$ GeV/c in 0-10% and 30-50%

D_s⁺ nuclear modification factor

$$R_{\rm AA}(p_{\rm T}) = \frac{({
m dN/dp_T})_{\rm AA}}{\langle T_{\rm AA} \rangle \times ({
m dN/dp_T})_{\rm pp}}$$

- ➤ Hint of less suppression of D_s+ than nonstrange D-mesons in Pb-Pb collisions
- Models including charm quark coalescence describe the data

Λ_c^+ nuclear modification factor

- ho_c^+ R_{AA} in 0-80% for 6 < p_T < 12 GeV/c higher (1.7 σ) than that of D mesons
- ightharpoonup Hint of an hierarchy: $\Lambda_c^+ R_{AA} > D_s^+ R_{AA} > \text{non-strange D mesons } R_{AA} > \text{charged-particle } R_{AA}$

- \rightarrow Λ_c^+ /D⁰ in Pb-Pb higher (2 σ) than that in pp and p-Pb collisions
- Results described by model calculations including only coalescence

Charmed-baryon production increased by hadronisation via coalescence?

- \triangleright Open heavy-flavour decay electron R_{AA} in Pb-Pb 0-10% collisions at 5.02 TeV down to p_T = 0.5 GeV/c
- \triangleright Similar suppression of electrons at mid rapidity and muons at forward rapidity from heavy flavour hadron decay (dominated by beauty at high p_T)
- ➤ Large suppression at high p_T in Pb-Pb collisions (factor ≈ 4 around 10 GeV/c)
 - consistent with model predictions (radiative + collisional energy loss)

- ➤ Electrons from beauty- hadron decay in 0-10% Pb-Pb collisions at 5.02 TeV
- \succ Hint of smaller suppression for beauty than charm+beauty decay electrons at the same electron p_{T}
- Observed suppression for p_T>3 GeV/c
- Suppression is consistent with the models including mass dependent energy loss

- > Strong suppression of D⁰ jets for $p_T > 5 \text{ GeV/}c$
- \triangleright Hint of smaller R_{AA} than track-based jets with $p_T > 50 \text{ GeV/}c$
- > Similar suppression for D⁰ jets and D⁰ mesons

D meson v_2

- \triangleright Positive non-strange D-meson v_2 for $2 < p_T < 8-10$ GeV/c in mid-central (10-30%, 30-50%) Pb-Pb collisions
- \triangleright D_s⁺ v_2 in 30-50% compatible within uncertainties with non-strange D-meson

Comparison with charged particles:

 $v_2(D) \simeq v_2(\pi^{\pm})$ for $p_T > 4$ GeV/c in the 10-30% and 30-50% centrality classes Hint of $v_2(D) < v_2(\pi^{\pm})$ for $p_T < 4$ GeV/c in the 10-30% and 30-50% centrality classes

D meson R_{AA} and v_2 vs models

- \triangleright A simultaneous description of complementary observables (R_{AA} and v_2) over a wide p_T range is a challenging task: measurement together provides a strong constraint on models
- ➤ Models in which charm quarks pick up collective flow via recombination and/or subsequent elastic collisions in expanding hydrodynamic medium do better at describing both R_{AA} and v₂ at low p_T (BAMPS elastic, LBT, MC@sHQ+EPOS2, TAMU, POWLANG, PHSD)
- \triangleright Models able to reproduce v_2 with a diffusion coefficient $2\pi TD_s(T)$ in the range 1.5-7 at T_c with a corresponding thermalisation time of charm quarks of 3-14 fm/c

Summary and outlook

A wealth of data for the study of heavy-flavour production in pp ($\sqrt{s} = 2.76, 5, 7, 8$ and 13 TeV), p-Pb ($\sqrt{s}_{NN} = 5.02$ and 8.16 TeV) and Pb-Pb ($\sqrt{s_{NN}}$ = 2.76 and 5.02 TeV) collisions

pp collisions

- D-mesons and open heavy-flavour decay leptons: p_T differential cross section adequately described by pQCD models
- Charmed baryons: models unable to describe data → Need better understanding of fragmentation function

p-Pb collisions

- $R_{\rm pPb}$ of non-strange D-mesons, $D_{\rm s}^+$ meson and $\Lambda_{\rm c}^+$ all compatible _ models including CNM effects
- Charmed baryon to meson ratio in pp and n. T.

Pb-Pb collisions

- Higher precision on current observables and more differential measurement expected with 2018 Pb Ph run and in the next rune after the ALICE ungrade E Pb run and in the next runs after the ALICE upgrade
- D_s and Δ_c production in Pb-Pb: described by the models including coalescence.
- Positive v_2 observed for open heavy-flavour hadrons and decay leptons: \rightarrow Charm quarks participate in the collective expansion of the medium
- Hints of smaller suppression for beauty-decay electrons from $p_T > 3$ GeV/c: models including mass dependent energy loss mechanism provide a good description of data
- First measurement of D⁰-tagged jets in Pb-Pb: large suppression observed in 0-20% collisions.

Thank you for your kind attention!!!

Renu Bala, Heavy Flavour Meet-2019, IIT Indore