Measurements of heavy-flavour production as a function of charged-particle multiplicity in pp and p—Pb collisions with ALICE at the LHC

Preeti Dhankher on behalf of the ALICE collaboration

IIT Bombay, Mumbai

Date: 16/03/2019

Heavy Flavour Meet 2019, IIT Indore

Why Heavy flavour?

Heavy quarks (charm and beauty quarks), due to their large masses ($m_c \sim 1.3 \text{ GeV}/c^2$, $m_b \sim 4.2 \text{ GeV}/c^2$) **ALICE**

- → Produced via initial hard scatterings at the early stages of the collision.
- \rightarrow Production cross-section calculable perturbatively down to low p_{T} .

$$d\sigma_{AB\to C}^{hard} = \sum_{a,b} f_{a/A}(x_a, Q^2) \otimes f_{b/B}(x_b, Q^2) \otimes d\sigma_{ab\to c}^{hard}(x_a, x_b, q^2) \otimes D_{c\to C}(z, Q^2)$$

Parton Distribution Function (PDF)

Partonic hard scattering cross-section

Fragmentation function

In pp collisions:

- Important test of perturbative QCD calculations
- Reference for nuclear modification in pA, AA collisions.

In p-Pb collisions:

Studies provide access to **cold nuclear matter(CNM)** effects. Heavy-flavour yield can be modified by

- Nuclear modification of the PDFs
- k_T broadening: Multiple elastic scattering of the parton before the hard scattering. Modifies the p_T distribution.
- Energy loss in cold nuclear matter (in the initial or final state)

Heavy-flavour production as a function of multiplicity:

- Insights about the interplay between hard and soft mechanisms for particle production.
- Study the role of multiple parton interactions(MPI) in the heavy-flavour sector.

MPI related measurement at the LHC:

CMS: Studies on jets and underlying event (Eur. Phys. J. C73(2013) 2674).
PYTHIA cannot reproduce the trend in data without MPI.
MPIs have a substantial contribution at large multiplicity.

LHCb: Double charm production(J. High Energy Phys., 06 (2012) 141).
agrees better with models including double parton scattering.

ALICE: Analysis of minijet production (JHEP 09 (2013) 049)
 MPI increases at higher multiplicities

• Also allows us to study of possible centrality-dependent modification of p_T spectra in p-Pb collisions.

Heavy-flavour reconstruction in ALICE

1) HF hadron via hadronic decays

$D^0 ightarrow \pi^- K^+$	$BR \approx 3.93 \%$
$D^+ ightarrow K^- \pi^+ \pi^+$	$BR \approx 9.46 \%$
$D^{*+} ightarrow D^0 (ightarrow K^- \pi^+) \pi^+$	$BR \approx 2.66 \%$
$D_s^+ o \Phi(o K^-K^+)\pi^+$	$BR \approx 2.27\%$
$\Lambda_c^+ o p K^- \pi^+$	$BR \approx 6.35\%$
$\Lambda_c^+ o ho K_s^0 (o \pi^+ \pi^-)$	$BR \approx 1.58\%$

HF hadron reconstruction

- Full reconstruction of the HF hadron via hadronic decay channel.
- Displaced secondary vertex topology due to large decay length of HF hadrons (D $c\tau$ ~ 123 312 µm, Λ_c $c\tau$ ~ 60 µm, B and Λ_b $c\tau$ ~ 450 µm).
- PID of the decay products (kaon and pion ID for charm hadrons).
- Invariant mass analysis to obtain the raw yield.

$$D^0 \rightarrow K^- \pi^+$$

Heavy-flavour reconstruction in ALICE

2) lepton channel

c,b
$$\rightarrow$$
 (e + μ) + X, BR \approx 10%

Electron Channel: Heavy-flavour decay electron (HFE)

- Electron identification:
 - Low and intermediate p_T : TPC and TOF

Intermediate and high p_T : TPC and EMCAL

• Background (π^0 and η Dalitz decays, γ conversions) subtracted with e⁺e⁻invariant mass analysis

Muon Channel: Heavy-flavour decay muon (HFM)

- Muon identification: Muon arm (tracking, trigger and absorbers for muon -4.0 < η <-2.5).
- Background from primary π, K decay subtracted → via simulation tuned on central barrel data: data-driven MC cocktail

Background from W/Z subtracted \rightarrow with templates obtained from simulation Background from J/ ψ subtracted

Multiplicity estimation in ALICE

Charged- particle multiplicity estimation:

- At mid-rapidity $|\eta| < 1$, charged particle multiplicity is estimated using SPD tracklets.
 - SPD tracklets reconstructed by connected hit in either of SPD layer with origin at the vertex.
- The variation of the SPD efficiency with the z position of the primary vertex (z_{vertex}) is corrected using a

data-driven method.

$$N_{trklts}^{corr} = N_{trklts} - Poisson \left(N_{trklts} \left(\frac{\langle N_{ref} \rangle}{\langle N_{trklts} \rangle} - 1 \right) \right)$$

 $< N_{\text{ref}} > \text{ corresponds to } z_{\text{vertex}} = z_0 \text{ position}$ where $< N_{\text{trklts}} > \text{ is maximum}$.

• The efficiency loss at z₀(reference point) and other track-to-particle-corrections need to be taken into account to evaluate the actual charged-particle value N_{ch}. Corrected using MC information.

$$N_{ch} = \alpha N_{trklts}^{corr}$$

Heavy-flavour dependence on event multiplicity: self-normalised yield

- ALICE
- Self-normalised yield of heavy-flavour decay muons (\sqrt{s} = 8 TeV, forward rapidity) and electrons (\sqrt{s} = 13 TeV, mid rapidity) versus self-normalised multiplicity.
- Multiplicity measured using SPD tracklets at mid rapidity ($|\eta| < 1$).

pp ,
$$\sqrt{s}$$
 = 8 TeV c,b $\rightarrow \mu$, 2.5 < y < 4

pp ,
$$\sqrt{s}$$
 = 13 TeV c,b → e , |y| < 0.8

- The self-normalised yields show a faster than linearly increasing trend.
- Higher p_T ranges show tendency for steeper increase.

Comparison of self-normalised yield at forward (c,b $\rightarrow \mu$) and at mid rapidity (c,b \rightarrow e, D-mesons)

- Different trend of self-normalised yield for mid rapidity (c,b → e) and forward rapidity (c,b → µ). However
 for D-meson the trend is compatible with heavy-flavour decay muons within uncertainties.
- difference in the trend of HF decay at mid-rapidly and at forward can be due to autocorrelation effect and jet bias.
 - Due to overlap in the rapidity regions of multiplicity estimator (mid rapidity) and HF yield (c,b → e , D-mesons at mid rapidity).

- c, b \rightarrow μ data compared to EPOS3.210 prediction without hydrodynamics_{(Phys. Rev. C 89 (2014) 064903)}.
 - EPOS3.210 underestimates data at higher multiplicities for all p_T ranges.
- -c, b \rightarrow e data compared to PYTHIA8.2 prediction (Comput. Phys. Commun. 191 (2015) 159).
 - PYTHIA8.2 predictions fairly match with the data.

Comparison of self-normalised yield of D-meson with HF-decay electron at mid rapidity.

- Compatible trend in both pp and p-Pb collisions.
- High-multiplicity p-Pb collisions: MPI (like pp) but also have higher number of binary nucleon-nucleon collisions.
- The trend of HF-decay electron is compatible with the average D meson.

Heavy-flavour dependence on event multiplicity: Model comparison

arXiv:1602.07240v2

Comparison of self-normalised yield of D-meson in p-Pb collisions at 5.02 TeV with models.

EPOS 3.116 without hydrodynamics

initial condition: "Parton-based Gribov-Regge" formalism of multiple scatterings.

EPOS 3.116 with hydrodynamics

along with the initial condition, a 3D+1 viscous hydrodynamical evolution is applied to the core of the collision

- measurements agree with the EPOS 3 model calculations within uncertainties.
- The results at high multiplicity are better reproduced by the EPOS 3 with hydrodynamic evolution.
 - → Faster than linear increase

Heavy-flavour dependence on centrality: QpPb

- Nuclear modification factor provides access to cold nuclear matter(CNM) effects.
- Q_{pPb} : centrality-dependent nuclear modification factor. \rightarrow centrality-dependent CNM effects.

$$Q_{pPb}^{cent} = \frac{1}{\langle T_{pPb}^{cent} \rangle} \frac{dN_{pPb}^{cent}/dp_T}{d\sigma_{pp}/dp_T}$$

- Central and peripheral results are compatible with each other and with unity for D meson and HFdecay electrons.
- D-meson Q_{pPb} similar to charged particles within uncertainties.

 Q_{cp}: Ratio of most central collisions to the most peripheral collisions spectra.

Central: 0-10% Peripheral: 60 - 100%

$$Qcp = \frac{N_{pPb}^{cent}/dp_T}{\langle T_{pPb}^{cent} \rangle} / \frac{dN_{pPb}^{peri}/dp_T}{\langle T_{pPb}^{peri} \rangle}$$

 Hint of D-meson Q_{cp} > 1 in 2 < p_T < 8 GeV/c with 1.5 σ significance. → similar trend as charged particles. Initial or final-state effect? Need model for interpretation.

Heavy-flavour decay electron and inclusive muons v_2

F ALTCE

- Two-particle correlations between HF-decay electron (central rapidity) with charged particles at central rapidity in high-multiplicity (0-20%) and low-multiplicity (60-100%) events.
- Jet bias subtraction: high mult. low mult.

- **Positive** ν_2 observed for HF-decay electrons $(1.5 < p_T < 4 \text{ GeV}/c)$ with significance of $\sim 5\sigma$.
- Effect is qualitatively similar to the one observed for light flavours and inclusive muons.
- Collective effects can be present. Or Initial or final state effect? → need model predictions
 - Positive ν_2 observed for inclusive muons.
- Method: Q-cumulants with 2- and 4- particle correlations

Summary

- Multiplicity dependent production of heavy-flavour hadrons and leptons results are presented in pp and pPb systems.
 - Results show stronger than linear enhancement as a function charged-particle multiplicity estimated at mid-rapidity.
 - The factors that can be attributed to this trend are contribution from Multiple- Parton Interactions
 (MPI) and further influenced by multiple binary nucleon—nucleon interactions, and the initial
 conditions of the collision modified by CNM effects in p-Pb system. or auto-correlation effects.
 - Further investigation is needed and also model comparison to better understand the trend.

- Positive v₂ measured for inclusive muons.

Thank you!

Back-up slides

chematic view of a pp interaction in which a hard scattering between two valence quarks (red box) takes place

D-meson yield vs Multiplicity in pp at 7 TeV compared with models

Percolation(Ferreiro, Pajares, PRC86(2012)034903)

Particle production via exchange of colour sources between projectile and target(close to MPI)

→ Faster than linear increase

EPOS3.099(Werneretal., PRC 89(2014)064903)

Gribov-Regge multiple-scattering formalism

Saturation scale to model non-linear effects

Number of MPI directly related to multiplicity.

→ Faster than linear increase

PYTHIA8(Sjostrand etal., Comput.Phys.Commun.178 (2008) 852)

- Soft-QCD tuned
- Color reconnection
- MPI
- → Linear increase