

3rd Heavy Flavour Meet 2019

Electrons from beauty-hadron decays in different collision systems with ALICE at the LHC

Sudhir Pandurang Rode

on behalf of ALICE Collaboration

Indian Institute of Technology Indore, India

March 18, 2019

Outline

- Physics motivation
- Analysis strategy
- Results and discussion
- Summary and outlook

Physics motivation

- Charm and beauty quarks are produced in the initial hard scattering processes at the early stages of the collision.
- $m_{\rm c,b} \gg {\rm Quantum~ChromoDynamics~scale~parameter~} (\Lambda_{\rm OCD} \approx 200~{\rm MeV}).$
- BR(B, D \rightarrow e ν X) \approx 10%.

pp collisions

- Measure the cross section of electrons from beauty-hadron decays in pp collisions and provide the required reference for corresponding studies in large systems.
- Test of perturbative Quantum ChromoDynamics.

Pb-Pb collisions

 Study the mass dependent energy loss of quarks in hot QCD medium and participation of heavy quarks the collective expansion of the system.

p-Pb collisions

• Study the cold nuclear matter effects.

ALICE Detector: Identification of electrons at low p_T

- Hits in both SPD layers to minimize the number of tracks from photon conversions.
- Cut on deviation from the expected electron dE/dx.
- $|t_{TOF} t_{TOF}^e| < 3 \sigma_{\text{electron}}$

ALICE Detector: Identification of electrons at high p_{T}

- Hits in both SPD layers to minimize the number of tracks from photon conversions
- Cut on deviation from the expected electron dE/dx.
- E/p: energy deposited in the EMCal / track momentum (0.9 < E/p < 1.2)

E/p

Analysis strategy: pp 7 TeV and p-Pb 5.02 TeV

- Identify inclusive electrons using Time Projection Chamber (TPC) and Time of Flight (TOF) detectors with ALICE.
- The electrons from beauty-hadron decays have larger impact parameter or distance of closest approach (DCA) to the primary vertex compared to the electron background from other sources.
- Limit on the minimum DCA of the electron candidate tracks. is applied to increase the signal to background ratio.

• The remaining electron background is estimated in the MC and then subtracted, based on other ALICE measurements by re-weighting the background sources in PYTHIA to match with the measured ones.

Analysis Strategy: Electrons from beauty decays via DCA cut method

- ullet The b o e have larger DCA compared to their background \Rightarrow cut on the minimum DCA to increase the S/B ratio.
- Background sources are estimated, based on other ALICE measurements by re-weighting the relevant background sources in PYTHIA to match the measured ones.

Analysis strategy:Pb-Pb 2.76 and 5.02 TeV analyses at low and high p_{T}

Steps	low p_{T}	high $ ho_{ m T}$
Identify inclusive electron yield	TPC-TOF	TPC-EMCal (Electromagnetic Calorimeter)
Remove hadron contamination		Subtract hadron DCA distribution scaled to match the estimated hadron contamination
Remove conversion and non-HF electrons		Subtract the main background from photonic sources using data-driven photonic electron tagging method
	Fit four MC templates (Dalitz, conversion electrons, $c \rightarrow e$, and $b \rightarrow e$) to inclusive electron DCA	
Remove $c \rightarrow e$		Fit two MC templates (c $ ightarrow$ e and b $ ightarrow$ e) to non-photonic electron DCA

Analysis Strategy: Electrons from beauty decays via DCA fits

(Pb-Pb 2.76 and 5.02 TeV)

- Low- p_T analysis, DCA templates like Dalitz, conversion electrons, $c \rightarrow e$, and $b \rightarrow e$ obtained using MC and fit to data using a log-likelihood fitting routine.
- High- p_T analysis. \Rightarrow just two templates for $c \rightarrow e$ and b → e since. Dalitz, conversion electrons and hadron contamination are removed using data-driven method.
- DCA templates are further corrected to better match to the data since they are not well reproduced in the Monte Carlo sample.
 - Shift DCA mean and correct resolution using Improver task.
 - Reweight the D + B meson p_T spectra.
 - Correct Λ_c/D^0 , D^+/D^0 , and D_s^+/D^0 ratios in the charm template based on ALICE measurements.

Results: Electrons from beauty decays in pp at 7 and p-Pb at 5.02 TeV

pp 7 TeV

- Measured cross section is in agreement with the FONLL predictions.
- $R_{\rm pPb}$ of electrons from beauty hadron decays is consistent with unity in the measured $p_{\rm T}$ range.

• It is also in the agreement with the theoretical predictions in the p_T range under study.

Results: Electrons from beauty decays in Pb-Pb at 2.76 TeV

- Indication of smaller supression of b (\rightarrow c) \rightarrow e with respect to b, c \rightarrow e at low/intermediate p_T .
- R_{AA} consistent with various theoretical models that consider mass-dependent radiative and collisional energy loss.

Results: Electrons from beauty decays in Pb-Pb at 5.02 TeV

- R_{AA} shows good agreement with Run 1 measurement.
- Hint of smaller supression of b $(\to c)\to e$ with respect to b, $c\to e$.
- ullet $R_{
 m AA}$ consistent with models that consider mass-dependent radiative and collisional energy loss.
- Analysis of new pp reference at 5.02 TeV is ongoing which would reduce the systematic uncertainties in the $R_{\rm AA}$ measurement and can give more precise results.

Summary

- Electrons from beauty hadron decays are measured using the ALICE detector which offers excellent particle identification as well as excellent vertex and track position resolution.
- Measurements were done using two different approaches:
 - By subtracting the electrons from background sources using other ALICE measurements (pp 7 TeV and p-Pb at 5.02 TeV).
 - By using DCA template fit method where the DCA templates of the electrons from different sources are fitted to the inclusive electrons using the log-likelihood fit approach (Pb-Pb at 2.76 and 5.02 TeV).
- $R_{\rm AA}$ hints at smaller supression of b (\rightarrow c) \rightarrow e with respect to b, c \rightarrow e at both 2.76 and 5.02 TeV at low/intermediate $p_{\rm T}$.
- All the measurements are consistent with the theoretical predictions within uncertainties.

Outlook

- Nuclear modification factor of beauty-hadron decay electrons in semi-central Pb-Pb collisions at 5.02 TeV.
- New pp reference at 5.02 TeV using the DCA template fit method will be available soon for improving the precision on $R_{\rm AA}$ in Pb-Pb collisions.
- The measurements of the beauty-hadron decay electrons will be improved with the upcoming ALICE detector upgrade.

BACK-UP

ALICE: RUN2

Analysis Strategy: Electrons from beauty quarks via DCA cut method

- The b \rightarrow e have larger DCA compared to the electron background \Rightarrow cut on the minimum DCA to increase the S/B ratio.
- In pp and p-Pb collisions, $|DCA| > [64+780 \times exp(0.56p_T)]$ (DCA in μ m, p_T in GeV/c)).

(pp 7 TeV and p-Pb 5.02 TeV)

Analysis Strategy: Electrons from beauty quarks via DCA Template fits

(Pb-Pb 2.76 and 5.02 TeV)

- Low- $p_{\rm T}$ analysis, DCA templates like Dalitz, conversion electrons, c \rightarrow e, and b \rightarrow e obtained using MC and fit to data using a log-likelihood fitting routine.
- High- $p_{\rm T}$ analysis, \Rightarrow just two templates for c \rightarrow e and b \rightarrow e since, Dalitz and conversion electrons are removed using data-driven method along with the hadron contamination.
- DCA templates are further corrected to better match to the data since they are not well reproduced in the Monte Carlo sample.
 - Shift DCA mean and correct resolution using Improver task.
 - Reweight the D and B meson p_T spectra.
 - Correct Λ_c/D^0 , D^+/D^0 , and D_s^+/D^0 ratios in the charm template based on ALICE measurements.

Results: Electrons from beauty quarks in Pb-Pb at 5.02 TeV

- RAA shows good agreement with Run 1 measurement.
- Indication of smaller supression of b (\rightarrow c) \rightarrow e with respect to b, c \rightarrow e at low/intermediate p_T .
- The scaled pp reference is used which is obtained from scaling it from 7 TeV using FONLL.
- Analysis of new pp reference is ongoing which would reduce the systematic uncertainties in the $R_{\rm AA}$ measurement and can give more precise results.

ALICE: RUN3

- ACORDE | ALICE Cosmic Rays Detector
- 2 AD ALICE Diffractive Detector
 - DCal Di-jet Calorimeter
 - **EMCal** | Electromagnetic Calorimeter
 - 5 HMPID | High Momentum Particle
 - TTS-IB | Inner Tracking System Inner Barrel
- ITS-OB | Inner Tracking System Outer Barrel
- MCH | Muon Tracking Chambers
- MFT | Muon Forward Tracker
- MID | Muon Identifier
- 1 PHOS / CPV | Photon Spectrometer
- 12 TOF | Time Of Flight
- 13 T0+A | Tzero + A
- 10+C | Tzero + C
- TPC | Time Projection Chamber
- 16 TRD | Transition Radiation Detector
- 17 V0+ | Vzero + Detector
- 18 ZDC | Zero Degree Calorimeter

References

- [1] M. Dordjevic and M. Djordjevic, Phys. Rev. C 92, 024918.
- [2] Sharma R, Vitev I and Zhang C, Phys. Rev. C 80, 054902 (2009).
- [3] Kang Z, Vitev I, Wang E, Xing H and Zhang C, Phys. Lett. B 740, 23-29 (2015).
- [4] M. He, R. J. Fries and R. Rapp, Phys. Lett. B 735, 445 (2014).
- [5] Fujii H and Watanabe K, Nucl. Phys. A 920, 78-93 (2013).
- [6] Eskola K, Paukkunen K and Salgado C, JHEP 04, 065 (2009).
- [7] Nahrgang M, Aichelin J, Gossiaux P B and Werner K, Phys. Rev. C 89, 014905 (2014).
- [8] E L Bratkovskaya, W Cassing, V P Konchakovski and O Linnyk, Nucl. Phys. A 856, 162 (2011).
- [9] Z. Xu and C. Greiner, Phys. Rev. C71, 064901 (2005).
- [10] Z. Xu and C. Greiner, Phys. Rev. C76, 024911 (2007).
- [11] J. Casalderrey-Solana and D. Teaney, Phys. Rev. D74, 085012 (2006).
- [12] C. P. Herzog, A. Karch, P. Kovtun, C. Kozcaz, and L. G. Ya ffe, JHEP 07, 013 (2006).
- [13] S. Wicks, W. Horowitz, M. Djordjevic and M. Gyulassy, Nucl. Phys. A 784, 426 (2007).
- [14] A. Beraudo, A. De Pace, M. Monteno, M. Nardi, F. Prino, JHEP 02, (2018) 043.