$3^{\text {rd }}$ Heavy Flavour Meet 2019

Electrons from beauty-hadron decays in different collision systems with ALICE at the LHC

Sudhir Pandurang Rode on behalf of ALICE Collaboration
Indian Institute of Technology Indore, India

March 18, 2019

Outline

- Physics motivation
- Analysis strategy
- Results and discussion
- Summary and outlook

Physics motivation

- Charm and beauty quarks are produced in the initial hard scattering processes at the early stages of the collision.
- $m_{\mathrm{c}, \mathrm{b}} \gg$ Quantum ChromoDynamics scale parameter $\left(\Lambda_{\mathrm{QCD}} \approx 200 \mathrm{MeV}\right)$.
- $\operatorname{BR}(\mathrm{B}, \mathrm{D} \rightarrow \mathrm{e} \nu \mathrm{X}) \approx 10 \%$.
- pp collisions
- Measure the cross section of electrons from beauty-hadron decays in pp collisions and provide the required reference for corresponding studies in large systems.
- Test of perturbative Quantum ChromoDynamics.
- $\mathbf{P b}-\mathbf{P b}$ collisions
- Study the mass dependent energy loss of quarks in hot QCD medium and participation of heavy quarks the collective expansion of the system.
- p-Pb collisions
- Study the cold nuclear matter effects.

ALICE Detector: Identification of electrons at low p_{T}

- Hits in both SPD layers to minimize the number of tracks from photon conversions.
- Cut on deviation from the expected electron $\mathrm{d} E / \mathrm{d} x$.
- $\left|t_{\text {TOF }}-t_{\text {TOF }}^{e}\right|<3 \sigma_{\text {electron }}$

ALICE Detector: Identification of electrons at high p_{T}

- Hits in both SPD layers to minimize the number of tracks from photon conversions
- Cut on deviation from the expected electron $\mathrm{d} E / \mathrm{d} x$.
- E/p: energy deposited in the EMCal / track momentum $(0.9<E / p<1.2)$

Analysis strategy: pp 7 TeV and p-Pb 5.02 TeV

- Identify inclusive electrons using Time Projection Chamber (TPC) and Time of Flight (TOF) detectors with ALICE.
- The electrons from beauty-hadron decays have larger impact parameter or distance of closest approach (DCA) to the primary vertex compared to the electron background from other sources.
- Limit on the minimum DCA of the electron candidate tracks is applied to increase the signal to background ratio.

- The remaining electron background is estimated in the MC and then subtracted, based on other ALICE measurements by re-weighting the background sources in PYTHIA to match with the measured ones.

Analysis Strategy: Electrons from beauty decays via DCA cut method

(pp 7 TeV and $\mathrm{p}-\mathrm{Pb} 5.02 \mathrm{TeV}$)

- The $\mathrm{b} \rightarrow \mathrm{e}$ have larger DCA compared to their background \Rightarrow cut on the minimum DCA to increase the S/B ratio.
- Background sources are estimated, based on other ALICE measurements by re-weighting the relevant background sources in PYTHIA to match the measured ones.

Analysis strategy: $\mathrm{Pb}-\mathrm{Pb} 2.76$ and 5.02 TeV analyses at low and high p_{T}

Steps	low $p_{\text {T }}$	high p_{T}
Identify inclusive electron yield	TPC-TOF	TPC-EMCal (Electromagnetic Calorimeter)
Remove hadron contamination		Subtract hadron DCA distribution scaled to match the estimated hadron contamination
Remove conversion and non-HF electrons		Subtract the main background from photonic sources using data-driven photonic electron tagging method
	Fit four MC templates (Dalitz, conversion electrons, $\mathrm{c} \rightarrow \mathrm{e}$, and $b \rightarrow e$) to inclusive electron DCA	
Remove c \rightarrow e		Fit two MC templates $(c \rightarrow e$ and b \rightarrow e) to non-photonic electron DCA

Analysis Strategy: Electrons from beauty decays via DCA fits

($\mathrm{Pb}-\mathrm{Pb} 2.76$ and 5.02 TeV)

- Low- p_{T} analysis, DCA templates like Dalitz, conversion electrons, $c \rightarrow e$, and $b \rightarrow e$ obtained using MC and fit to data using a log-likelihood fitting routine.
- High- p_{T} analysis, \Rightarrow just two templates for $\mathrm{c} \rightarrow \mathrm{e}$ and b \rightarrow e since, Dalitz, conversion electrons and hadron contamination are removed using data-driven method.
- DCA templates are further corrected to better match to the data since they are not well reproduced in the Monte Carlo sample.
- Shift DCA mean and correct resolution using Improver task.
- Reweight the $\mathrm{D}+\mathrm{B}$ meson p_{T} spectra.
- Correct $\Lambda_{c} / \mathrm{D}^{0}, \mathrm{D}^{+} / \mathrm{D}^{0}$, and $\mathrm{D}_{\mathrm{s}}^{+} / \mathrm{D}^{0}$ ratios in the charm template based on ALICE measurements.

Results: Electrons from beauty decays in pp at 7 and $\mathrm{p}-\mathrm{Pb}$ at 5.02 TeV (Phys. Lett. B721, 13(2013))

- Measured cross section is in agreement with the FONLL predictions.
- R_{pPb} of electrons from beauty hadron decays is consistent with unity in the measured p_{T} range.
- It is also in the agreement with the theoretical predictions in the p_{T} range under study.

Results: Electrons from beauty decays in $\mathrm{Pb}-\mathrm{Pb}$ at 2.76 TeV

- Indication of smaller supression of $\mathrm{b}(\rightarrow \mathrm{c}) \rightarrow \mathrm{e}$ with respect to $\mathrm{b}, \mathrm{c} \rightarrow \mathrm{e}$ at low/intermediate p_{T}.
- R_{AA} consistent with various theoretical models that consider mass-dependent radiative and collisional energy loss.

Results: Electrons from beauty decays in $\mathrm{Pb}-\mathrm{Pb}$ at 5.02 TeV

ALI-PREL-308498

- R_{AA} shows good agreement with Run 1 measurement.
- Hint of smaller supression of $b(\rightarrow c) \rightarrow e$ with respect to $b, c \rightarrow e$.
- $R_{\text {AA }}$ consistent with models that consider mass-dependent radiative and collisional energy loss.
- Analysis of new pp reference at 5.02 TeV is ongoing which would reduce the systematic uncertainties in the R_{AA} measurement and can give more precise results.
- Electrons from beauty hadron decays are measured using the ALICE detector which offers excellent particle identification as well as excellent vertex and track position resolution.
- Measurements were done using two different approaches:
- By subtracting the electrons from background sources using other ALICE measurements (pp 7 TeV and $\mathrm{p}-\mathrm{Pb}$ at 5.02 TeV).
- By using DCA template fit method where the DCA templates of the electrons from different sources are fitted to the inclusive electrons using the log-likelihood fit approach ($\mathrm{Pb}-\mathrm{Pb}$ at 2.76 and 5.02 TeV).
- R_{AA} hints at smaller supression of $\mathrm{b}(\rightarrow \mathrm{c}) \rightarrow \mathrm{e}$ with respect to $\mathrm{b}, \mathrm{c} \rightarrow \mathrm{e}$ at both 2.76 and 5.02 TeV at low/intermediate p_{T}.
- All the measurements are consistent with the theoretical predictions within uncertainties.

Outlook

- Nuclear modification factor of beauty-hadron decay electrons in semi-central $\mathrm{Pb}-\mathrm{Pb}$ collisions at 5.02 TeV .
- New pp reference at 5.02 TeV using the DCA template fit method will be available soon for improving the precision on R_{AA} in $\mathrm{Pb}-\mathrm{Pb}$ collisions.
- The measurements of the beauty-hadron decay electrons will be improved with the upcoming ALICE detector upgrade.

BACK-UP

ALICE: RUN2

THE ALICE DETECTOR MNMNA

Analysis Strategy: Electrons from beauty quarks via DCA cut method

- The $\mathrm{b} \rightarrow \mathrm{e}$ have larger DCA compared to the electron background \Rightarrow cut on the minimum DCA to increase the S / B ratio.
- In pp and p-Pb collisions, $|\mathrm{DCA}|>[64+780$ $\left.\times \exp \left(0.56 p_{\mathrm{T}}\right)\right]\left(\mathrm{DCA}\right.$ in $\mu \mathrm{m}, p_{\mathrm{T}}$ in $\left.\left.\mathrm{GeV} / \mathrm{c}\right)\right)$.

Analysis Strategy: Electrons from beauty quarks via DCA Template fits

($\mathrm{Pb}-\mathrm{Pb} 2.76$ and 5.02 TeV)

- Low- p_{T} analysis, DCA templates like Dalitz, conversion electrons, $c \rightarrow e$, and $b \rightarrow e$ obtained using MC and fit to data using a log-likelihood fitting routine.
- High- p_{T} analysis, \Rightarrow just two templates for $\mathrm{c} \rightarrow \mathrm{e}$ and b \rightarrow e since, Dalitz and conversion electrons are removed using data-driven method along with the hadron contamination.
- DCA templates are further corrected to better match to the data since they are not well reproduced in the Monte Carlo sample.
- Shift DCA mean and correct resolution using Improver task.
- Reweight the D and B meson p_{T} spectra.
- Correct $\Lambda_{c} / \mathrm{D}^{0}, \mathrm{D}^{+} / \mathrm{D}^{0}$, and $\mathrm{D}_{\mathrm{s}}^{+} / \mathrm{D}^{0}$ ratios in the charm template based on ALICE measurements.

Results: Electrons from beauty quarks in $\mathrm{Pb}-\mathrm{Pb}$ at 5.02 TeV

- R_{AA} shows good agreement with Run 1 measurement.
- Indication of smaller supression of $\mathrm{b}(\rightarrow \mathrm{c}) \rightarrow \mathrm{e}$ with respect to $\mathrm{b}, \mathrm{c} \rightarrow \mathrm{e}$ at low/intermediate p_{T}.
- The scaled pp reference is used which is obtained from scaling it from 7 TeV using FONLL.
- Analysis of new pp reference is ongoing which would reduce the systematic uncertainties in the R_{AA} measurement and can give more precise results.

ALICE: RUN3

(1) ACORDE | ALCC Cosmic Reass Delector
(2) $A D \mid A L C E D$ ifficative Deiector
(3) DCal| \mid D-jei Calofimeter
4) EMCal| Electomangetic Calopimeer

(6) ITS-IB I Inee Tracking Sysiem-Inee Barel
(7) ITS-OB I Ineet Trading Sysiem-Outer lared
(8) MCH I Muon Trading chambers
(9) MFT / MLon Forward Tracker
(10) MID/Muon Identifier
(11) PHOS / CPV / Photon Spectrometer
(12) TOF I Time of fight
(13) $\mathrm{T} 0+\mathrm{A} \mid$ treero +A
(14) $\mathrm{T}+\mathrm{C} \mid$ $\mathrm{T}_{\text {zero }}+\mathrm{C}$
(1) $T P C \mid T$ ime Projection Chamber
(10) TRD | Transition Rediation Deetector
(17) $\mathrm{v} 0+\mid$ veror + Deecetor
(13) $\mathrm{ZDC} \mid$ Zero Degree Caboineeter

References

[1] M. Dordjevic and M. Djordjevic, Phys. Rev. C 92, 024918.
[2] Sharma R, Vitev I and Zhang C, Phys. Rev. C 80, 054902 (2009).
[3] Kang Z, Vitev I, Wang E, Xing H and Zhang C, Phys. Lett. B 740, 23-29 (2015).
[4] M. He, R. J. Fries and R. Rapp, Phys. Lett. B 735, 445 (2014).
[5] Fujii H and Watanabe K, Nucl. Phys. A 920, 78-93 (2013).
[6] Eskola K, Paukkunen K and Salgado C, JHEP 04, 065 (2009).
[7] Nahrgang M, Aichelin J, Gossiaux P B and Werner K, Phys. Rev. C 89, 014905 (2014).
[8] E L Bratkovskaya, W Cassing, V P Konchakovski and O Linnyk, Nucl. Phys. A 856, 162 (2011).
[9] Z. Xu and C. Greiner, Phys. Rev. C71, 064901 (2005).
[10] Z. Xu and C. Greiner, Phys. Rev. C76, 024911 (2007).
[11] J. Casalderrey-Solana and D. Teaney, Phys. Rev. D74, 085012 (2006).
[12] C. P. Herzog, A. Karch, P. Kovtun, C. Kozcaz, and L. G. Ya ffe, JHEP 07, 013 (2006).
[13] S. Wicks, W. Horowitz, M. Djordjevic and M. Gyulassy, Nucl. Phys. A 784, 426 (2007).
[14] A. Beraudo, A. De Pace, M. Monteno, M. Nardi, F. Prino, JHEP 02, (2018) 043.

