Energy spectra, decay constants and form factors of heavy flavoured hadrons from lattice QCD

Nilmani Mathur

Department of Theoretical Physics,

TIFR, INDIA

Charmed Baryons (PDG, 2016)

Charmed Baryons (2017)

Ω_c^0 Baryons

LHCb Collaboration :

Phys. Rev. Lett. 118 (2017) no.18, 182001

Resonance	Mass (MeV)	Γ (MeV)	Yield	N_{σ}
$\Omega_c(3000)^0$	$3000.4 \pm 0.2 \pm 0.1^{+0.3}_{-0.5}$	$4.5 \pm 0.6 \pm 0.3$	$1300 \pm 100 \pm 80$	20.4
$\Omega_{c}(3050)^{0}$	$3050.2 \pm 0.1 \pm 0.1^{+0.3}_{-0.5}$	$0.8 \pm 0.2 \pm 0.1$	$970 \pm 60 \pm 20$	20.4
		$< 1.2 \mathrm{MeV}, 95\% \mathrm{CL}$		
$\Omega_c(3066)^0$	$3065.6 \pm 0.1 \pm 0.3^{+0.3}_{-0.5}$	$3.5 \pm 0.4 \pm 0.2$	$1740 \pm 100 \pm 50$	23.9
$\Omega_c(3090)^0$	$3090.2 \pm 0.3 \pm 0.5^{+0.3}_{-0.5}$	$8.7 \pm 1.0 \pm 0.8$	$2000 \pm 140 \pm 130$	21.1
$\Omega_c(3119)^0$	$3119.1 \pm 0.3 \pm 0.9^{+0.3}_{-0.5}$	$1.1 \pm 0.8 \pm 0.4$	$480 \pm 70 \pm 30$	10.4
		$<2.6\mathrm{MeV}, 95\%~\mathrm{CL}$		
$\Omega_c(3188)^0$	$3188 \pm 5 \pm 13$	$60 \pm 15 \pm 11$	$1670 \pm 450 \pm 360$	
$\Omega_c(3066)_{\rm fd}^0$			$700 \pm 40 \pm 140$	
$\Omega_c(3090)_{\rm fd}^0$			$220 \pm 60 \pm 90$	
$\Omega_c(3119)_{\rm fd}^0$			$190 \pm 70 \pm 20$	

Discovery of doubly-charmed baryon

$$\mathcal{Z}_{cc}^{++} \rightarrow \Lambda_c^+ K^- \pi^+ \pi^+$$

LHCb: Phys. Rev. Lett. 119, 112001(2018)

$$3621.40 \pm 0.72 \, (\mathrm{stat}) \pm 0.27 \, (\mathrm{syst}) \pm 0.14 \, (\Lambda_c^+) \, \mathrm{MeV}/c^2$$

Life time : $0.256^{+0.024}_{-0.022} (stat) \pm 0.014 (syst) ps.$

arXiv:1806.02744

Charmed Baryons (2017)

Heavy Hadron Energy Spectra: What we know and do not know

- Ground states of heavy hadrons are known except bc baryons
- Excited states of quarkonia are well-known
- Excited states of other heavy hadrons are not so well-known compared to their light quark counterparts.
- Not many b baryons are known
- Excited state of B_s mesons are not well determined
- Except $B_c(1S, 2S)$, B_c states are unknown
- A large number of unusual heavy hadrons have been discovered in last 15 years!

Theory

- **QCD**: Theory of strong Interactions
 - So far, we are incapable in solving the full theory analytically in the non-perturbative regime
 - pQCD
- Define theory in 4D Euclidean space-time grid and solve numerically
 - : Lattice QCD (systematics needs to be in good control, the study of excited states with multi-hadron scatterings has made impressive progress)

Models:

- Motivated from QCD or low energy limits of QCD
 - Use chiral Lagrangian rather than full QCD Lagrangian, HQET, NRQCD etc.
 - > Spin independent confining interaction (linear or HO)
 - > Spin independent community in the spin dependent hyperfine interactions: $V_{HF} \propto \sum_{i \in I} (\vec{\sigma} \lambda_a)_i (\vec{\sigma} \lambda_a)_j$
 - $V_{HF} \propto \sum_{i \sim i} V(\vec{r}_{ij}) \lambda_i^F . \lambda_j^F \vec{\sigma}_i . \vec{\sigma}_j$ Spin-orbit and tensor interactions
 - Flavour dependent short range quark force
 - Flavour symmetric spin-spin interaction

LQCD: Euclidean formulation of QCD on hypercubic lattice where lattice spacing provides the ultraviolet cut-off

LQCD : A non-perturbative, gauge invariant regulator for the QCD path integrals.

- Quark fields lives on sites
- Gauge fields lives on links
- Lattice spacing: UV cut off
- Lattice size : IR cut off

$$<\hat{O}> = \frac{\int DU \left\{ detD \right\}^{n_{f}} O[U,D^{-1}] \, e^{-S_{g}[U]}}{\int DU \, \left\{ detD \right\}^{n_{f}} \, e^{-S_{g}[U]}} = \prod_{n} \int dU_{n} \, \frac{1}{Z} \left\{ detD(U) \right\}^{n_{f}} \, e^{-S_{g}[U]} \, O[U,D^{-1}]$$

Discretization \Rightarrow Finite number of degrees of freedom

 \Rightarrow Infinte dimensional path integrals \rightarrow finite dimensional integrals.

Employ Monte Carlo importance sampling methods on Euclidean metric for numerical studies. $\langle \boldsymbol{o} \rangle = \frac{1}{N} \sum_{i=1}^{N} \boldsymbol{o} \{ \boldsymbol{U}_i \} + \Delta \boldsymbol{o}, \qquad \Delta \boldsymbol{o} \propto \frac{1}{\sqrt{N}} \stackrel{N \to \infty}{\longrightarrow} \boldsymbol{0}$

LQCD

Inputs:

Lattice spacing (coupling): from known masses: say M_{Ω} or static quark potential heavy meson spectrum etc.

Quark mass: $u/d \leftarrow m_{\pi}$

 $s \leftarrow m_k \text{ or } m_{\overline{s}s} \text{ or } m_{\Xi}$

 $c \leftarrow 1/4(3J/\psi + \eta_c)$

 $b \leftarrow 1/4(\Upsilon_b + \eta_b)$

Continuum limit : $a \rightarrow 0$, Na fixed

Infinite volume : $Na \rightarrow \infty$

Lattice Spacing : a = 0.15 - 0.04 fermi

Na = 1.5 - 6 fermi

 $m_{\pi}L\sim 3-5$

Hadron spectroscopy Weak decays and matrix elements **Vacuum structure** and confinement **Nonzero temperature** Physics Beyond Models
the Standard Models
Supersymmetry and density Parandard model **Nuclear Physics**

quark propagators:

Inverse of very large matrix of space-time, spin and color

$$\varphi(t) = e^{Ht} \varphi(0) e^{-Ht}$$

$$G(t, \vec{p}) = \sum_{\vec{x}} e^{-i\vec{p}.(\vec{x} - \vec{x}_0)} \sum_{n, \vec{q}} \langle 0 | \varphi(x) | n, \vec{q} \rangle \langle n, \vec{q} | \varphi(x_0) | 0 \rangle$$

$$= \sum_{n} W_n e^{-E_p^n(t - t_0)} \xrightarrow[t \to \infty]{} W_1 e^{-E_1^n(t - t_0)}$$

Analysis (Extraction of Mass)

$$G(\tau) = \sum_{i=1}^{N} W_i e^{-m_i \tau} \underset{\tau \to \infty}{\approx} W_1 e^{-m_1 \tau}$$

Effective mass:

$$\frac{G(\tau)}{G(\tau+1)} = e^{-m_1\tau + m_1(\tau+1)}$$

$$m(\tau) = \ln\left[\frac{G(\tau)}{G(\tau+1)}\right]$$

$$\chi^2 = \sum_{i=1}^{N} \left[\frac{f(t_i) - \langle G(t_i) \rangle}{\varepsilon(t_i)}\right]$$

$$e^{-mt} = e^{-(ma)(t/a)}$$
dimensionless integer

Determine α by measuring some physical quantity and compare that to expt, like parameter tuning in any renormalized field theory

mass

timeslices

Control of Sytemetics

LQCD for heavy quark physics

$$L_q = \overline{\psi}(\cancel{D} + m)\psi \to \overline{\psi}(\gamma \cdot \Delta + ma)\psi$$

Source of discretization error (need improved discretization method preserving continuum symmetries)

Light hadron scale : Λ_{QCD}

Heavy hadron scale: m_Q ?

$$E = E_{a=0}(1 + A(m_Q a)^2 + B(m_Q a)^3 + \dots)$$

LQCD for heavy quark physics

ma << 1

Being heavy lattice correlation functions for heavy quarks decay rapidly.

Relativistic charm quark calculations are now possible.

However, relativistic bottom-quark is still prohibitively costly.

Mesons

HPQCD

Baryons

HSC: Padmanath et al, 1311.4806, Charm 2013 and 2015 Padmanath, TIFR thesis (2014)

Padmanath and NM: Phys. Rev. Lett. 119 (2017) no.4, 042001

Energy	Experiment		Lattice	
Splittings (ΔE)	ΔE	J^{P}	ΔE	J^{P}
, ,	(MeV)	(PDG)	(MeV)	
$E_{\Omega_c^0} - \frac{1}{2}E_{\eta_c}$	1203(2)	$1/2^{+}$	1209(7)	$1/2^{+}$
$\Delta E_{\Omega_c^0(2770)}$	70.7(1)	$3/2^{+}$	65(11)	$3/2^{+}$
$\Delta E_{\Omega_c^0(3000)}$	305(1)	?	304(17)	$1/2^{-}$
$\Delta E_{\Omega_c^0(3050)}$	355(1)	?	341(18)	$1/2^{-}$
$\Delta E_{\Omega_c^0(3066)}$	371(1)	?	383(21)	$3/2^{-}$
$\Delta E_{\Omega_c^0(3090)}$	395(1)	?	409(19)	$3/2^{-}$
$\Delta E_{\Omega_c^0(3119)}$	422(1)	?	464(20)	5/2-

Here $\Delta E^n = E^n - E^0$.

The new states correspond to the excited p-wave states.

Padmanath and NM: Phys. Rev. Lett. 119 (2017) no.4, 042001

Singly Charmed baryons

HSC: Padmanath et al, 1311.4806 Padmanath, TIFR thesis 2014

Doubly Charmed baryons

Doubly charmed-strange baryons ($\Omega_{cc}(ccs)$)

Is it the next doubly charmed baryon to be discovered?

Decay to : $\Xi^0 K^+ \pi^+ \pi^+$ and $\Omega_c \pi^+$

NM and Padmanath: Phys. Rev. D 99, 031501 (Rapid Comm) (2019)

bc hadrons

Hadrons	Lattice	Experiment	
$B_c(0^-)$	6276(3)(6)	6274.9(8)	
$B_c^*(1^-)$	6331(4)(6)	?	
$B_c(0^+)$	6712(18)(7)	?	
$B_c(1^+)$	6736(17)(7)	?	
$\Xi_{cb}(cbu)(1/2^+)$	6945(22)(14)	?	
$\Xi'_{cb}(cbu)(1/2^+)$	6966(23)(14)	?	
$\Xi_{cb}^*(cbu)(3/2^+)$	6989(24)(14)	?	
$\Omega_{cb}(cbs)(1/2^+)$	6994(15)(13)	?	
$\Omega'_{cb}(cbs)(1/2+)$	7045(16)(13)	?	
$\Omega_{cb}^{*}(cbs)(3/2^{+})$	7056(17)(13)	?	
$\Omega_{ccb}(1/2^+)$	8005(6)(11)	?	
$\Omega_{ccb}^{*}(3/2^{+})$	8026(7)(11)	?	
$\Omega_{cbb}(1/2^+)$	11194(5)(12)	?	
$\Omega_{cbb}^{*}(3/2+)$	11211(6)(12)	?	

$Mesons(\bar{q_1}q_2)$	Baryons $([q_1q_2q_3](J^P))$		
	$J^P \equiv 1/2^+$	$1/2^{+}$	$3/2^{+}$
$B_c(\bar{b}c)(0^-)$	$\Xi_{cb}[cbu]$	$\Xi'_{cb}[cbu]$	$\Xi_{cb}^*[cbu]$
$B_c^*(\bar{b}c)(1^-)$	$\Omega_{cb}[cbs]$	$\Omega'_{cb}[cbs]$	$\Omega_{cb}^*[cbs]$
$B_c(\bar{b}c)(0^+)$	$\Omega_{ccb}[ccb]$		$\Omega^*_{ccb}[ccb]$
$B_c(\bar{b}c)(1^+)$	$\Omega_{cbb}[bbc]$		$\Omega^*_{cbb}[bbc]$

NM, Padmanath and Mondal:

Phys. Rev. Lett. 121, 202002 (2018)

M

HSC: Padmanath, NM et al, 1311.4354

NM and Padmanath et al, arXiv:1311.4806

Ebert et al., PRD, 84, 014025, 2011

Charm hadron pressure (HRG) :

$$P(\hat{\mu}_{C}, \hat{\mu}_{B}) = P_{M} cosh(\hat{\mu}_{C}) + P_{B,C=1} cosh(\hat{\mu}_{C} + \hat{\mu}_{B})$$

$$\chi_{kl}^{BC} = \frac{\partial^{(k+l)} [P(\hat{\mu}_{C}, \hat{\mu}_{B})/T^{4}]}{\partial \hat{\mu}_{B}^{k} \partial \hat{\mu}_{C}^{l}}$$

Bazavov et al., PLB, 737, 210, 2014

Phys.Rev.Lett. 113 (2014) no.7, 072001

Exotic heavy flavour states

Newly found heavy flavour exotics

CHARMONIUM

Q: What are heavy quark exotica?

A: Phenomena in the heavy quark sector that do not easily fit into the naive quark model picture of mesons and baryons.

Q: Why are they interesting?

A: They can be used to explore novel phenomena in QCD:

hybrid mesons, tetraquarks, pentaquarks, molecules, hadroquarkonium, thresholds

Q: Why are they called XYZ?

A: Mostly historical reasons.

But now there are patterns:

Z: electrically charged (I = 1).

Y: JPC = 1--, made directly in e+e-.

X: whatever is leftover.

But there are many exceptions!

[And the PDG has now renamed them by IJPC.]

Q: How many have been found?

A: Many.

R. Mitchel@Quark confinement 2018

R. Lebed et al:

Progress in Particle and Nuclear Physics 93, 143 (2017)

Particle	$I^GJ^{p_G}$	Mass [MeV]	Width [MeV]	Production and Decay
$X(3823) \ (\psi_2(1D))$	(0-2)	3822.2 ± 1.2 [176]	< 16	$B \rightarrow KX; X \rightarrow \gamma \chi_{cl}$ $e^+e^- \rightarrow \pi^+\pi^-X; X \rightarrow \gamma \chi_{cl}$
X(3872)	0+1++	3871.69 ± 0.17 [178]	< 1.2	$B \rightarrow KX; X \rightarrow \pi^{+}\pi^{-}J/\psi$ $B \rightarrow KX; X \rightarrow D^{*0}D^{0}$ $B \rightarrow KX; X \rightarrow \gamma J/\psi, \gamma \psi(2S)$ $B \rightarrow KX; X \rightarrow \omega J/\psi$ $B \rightarrow K\pi X; X \rightarrow \pi^{+}\pi^{-}J/\psi$ $e^{+}e^{-} \rightarrow \gamma X; X \rightarrow \pi^{+}\pi^{-}J/\psi$ pp or $p\bar{p} \rightarrow X + any.; X \rightarrow \pi^{+}\pi^{-}J/\psi$
$Z_{c}(3900)$	1+1+-	3886.6 ± 2.4 [176]	28.1 ± 2.6	$e^+e^- \rightarrow \pi Z; Z \rightarrow \pi J/\psi$ $e^+e^- \rightarrow \pi Z; Z \rightarrow D^*D$
X(3915) Y(3940)	0+0++	3918.4 ± 1.9 [176]	20 ± 5	$\gamma \gamma \rightarrow X$; $X \rightarrow \omega J/\psi$ $B \rightarrow KX$; $X \rightarrow \omega J/\psi$
$Z(3930) (\chi_{c2}(2P))$	0+2++	3927.2 ± 2.6 176	24 ± 6	$\gamma \gamma \rightarrow Z; Z \rightarrow D\bar{D}$
X(3940)		$3942^{+7}_{-6} \pm 6$ 41	$37^{+26}_{-15} \pm 8$	$e^+e^- \rightarrow J/\psi + X; X \rightarrow DD^*$
Y(4008)	1	$3891 \pm 41 \pm 12$ 23	$255 \pm 40 \pm 14$	$e^+e^- \rightarrow Y; Y \rightarrow \pi^+\pi^- J/\psi$
$Z_c(4020)$	1+??-	4024.1 ± 1.9 [176]	13 ± 5	$e^+e^- \rightarrow \pi Z; Z \rightarrow \pi h_c$ $e^+e^- \rightarrow \pi Z; Z \rightarrow D^*\bar{D}^*$
$Z_1(4050)$	1-77+	$4051 \pm 14^{+20}_{-41}$ [133]	82-17-00	$B \rightarrow KZ; Z \rightarrow \pi^{\pm}\chi_{c1}$
$Z_c(4055)$	1+?7-	$4054 \pm 3 \pm 1$ T48	$45 \pm 11 \pm 6$	$e^+e^- \rightarrow \pi^\mp Z; Z \rightarrow \pi^\pm \psi(2S)$
Y(4140)	0+1++	$4146.5 \pm 4.5^{+4.6}_{-2.8}$ [125]	$83 \pm 21^{+21}_{-14}$	$B \rightarrow KY; Y \rightarrow \phi J/\psi$ $pp \text{ or } p\bar{p} \rightarrow Y + \text{any.}; Y \rightarrow \phi J/\psi$
X(4160)		$4156^{+20}_{-20} \pm 15$ 41	$139^{+111}_{-61} \pm 21$	$e^+e^- \rightarrow J/\psi + X; X \rightarrow D^*D^*$
$Z_c(4200)$	1+1+-	4196+31+17 46	370+70+70	$B \rightarrow KZ; Z \rightarrow \pi^{\pm}J/\psi$
Y(4230)	0-1	$4230 \pm 8 \pm 6$ 149	$38 \pm 12 \pm 2$	$e^+e^- \rightarrow Y; Y \rightarrow \omega \chi_{c0}$
$Z_c(4240)$	1+0	$4239 \pm 18^{+45}_{-10}$ [138]	$220 \pm 47^{+108}_{-74}$	$B \rightarrow KZ; Z \rightarrow \pi^{\pm}\psi(2S)$
$Z_2(4250)$	1-77+	4248 + 44 + 180 133	177-39-61	$B \rightarrow KZ; Z \rightarrow \pi^{\pm}\chi_{c1}$
Y (4260)	0-1	4251 ± 9 176	120 ± 12	$e^+e^- \rightarrow Y; Y \rightarrow \pi\pi J/\psi$
Y(4274)	0+1++	$4273.3 \pm 8.3^{+17.2}_{-3.6}$ 125	$52 \pm 11^{+8}_{-11}$	$B \rightarrow KY; Y \rightarrow \phi J/\psi$
X(4350)	0+?*+	$4350.6^{+4.6}_{-5.1} \pm 0.7$ 170	$13^{+18}_{-9} \pm 4$	$\gamma \gamma \rightarrow X; X \rightarrow \phi J/\psi$
Y(4360)	1	4346 ± 6 176	102 ± 10	$e^+e^- \rightarrow Y$; $Y \rightarrow \pi^+\pi^-\psi(2S)$
$Z_c(4430)$	1+1+-	4478-18 [176]	181 ± 31	$B \rightarrow KZ$; $Z \rightarrow \pi^{\pm}J/\psi$ $B \rightarrow KZ$; $Z \rightarrow \pi^{\pm}\psi(2S)$
X(4500)	0+0++	$4506 \pm 11^{+12}_{-15}$ [125]	$92 \pm 21^{+21}_{-20}$	$B \rightarrow KX; X \rightarrow \phi J/\psi$
X(4630)	1	4634 + 8 + 5 150	92^{+40+10}_{-24-21}	$e^+e^- \rightarrow X; X \rightarrow \Lambda_c\Lambda_c$
Y(4660)	1	4643 ± 9 176	72 ± 11	$e^+e^- \rightarrow Y; Y \rightarrow \pi^+\pi^-\psi(2S)$
X(4700)	0+0++	$4704 \pm 10^{+14}_{-24}$ [125]	$120 \pm 31^{+42}_{-33}$	$B \rightarrow KX; X \rightarrow \phi J/\psi$
$P_c(4380)$		$4380 \pm 8 \pm 29$ 35	$205 \pm 18 \pm 86$	$\Lambda_b \rightarrow KP_c; P_c \rightarrow pJ/\psi$
$P_c(4450)$		$4449.8 \pm 1.7 \pm 2.5$ 35	$39 \pm 5 \pm 19$	$\Lambda_b \rightarrow KP_c; P_c \rightarrow pJ/\psi$
X(5568)		$5567.8 \pm 2.9^{+0.9}_{-1.9}$ 175	$21.9 \pm 6.4^{+5.0}_{-2.5}$	$p\bar{p} \rightarrow X$ + anything; $X \rightarrow B_s \pi^{\pm}$
$Z_b(10610)$	1+1+-	10607.2 ± 2.0 [176]	18.4 ± 2.4	$e^+e^- \rightarrow \pi Z; Z \rightarrow \pi \Upsilon(1S, 2S, 3S)$ $e^+e^- \rightarrow \pi Z; Z \rightarrow \pi h_b(1P, 2P)$ $e^+e^- \rightarrow \pi Z; Z \rightarrow B\bar{B}^*$
$Z_b(10650)$	1+1+-	10652.2 ± 1.5 [176]	11.5 ± 2.2	$e^+e^- \rightarrow \pi Z; Z \rightarrow \pi \Upsilon(1S, 2S, 3S)$ $e^+e^- \rightarrow \pi Z; Z \rightarrow \pi h_b(1P, 2P)$ $e^+e^- \rightarrow \pi Z; Z \rightarrow B^*B^*$
$Y_b(10888)$	0-1	10891 ± 4 [176]	54 ± 7	$e^+e^- \rightarrow Y; Y \rightarrow \pi\pi\Upsilon(1S, 2S, 3S)$ $e^+e^- \rightarrow Y; Y \rightarrow \pi\pi h_b(1P, 2P)$

Z(4430) in $B o \psi(2S)K^+\pi^-$

■ Decay $B^0 o \psi(2S)K^+\pi^-$

■ Signal yield: 25k events

lacksquare Combinatorial background: $\sim 4\%$

■ 4D amplitude analysis: $(m^2(K\pi), m^2(\psi(2S)\pi), \theta_{\psi'}, \phi_{\psi'})$

$$\psi(2S)\pi \equiv c\overline{c}du$$

[PRL 112, 222002 (2014)]

Structure in $\psi(2S)\pi^-$ spectrum

Model-independent test of phase rotation

[PRL 112, 222002 (2014)]

K* states provide reference amplitude for phase motion measurement.

Clockwise rotation: characteristic of a resonant behaviour.

How to build a stable tetraquark?

- Two heavy quarks with two light quarks
- $C_l = \overline{3}$, good light diquark

$$F = \overline{3}, J_l = 0 \Rightarrow J_h = 1, C_h = 3, J^P = 1^+$$

- Spin dependent interaction $\propto 1/m_h$. For threshold $J^P = 1^+$ states, like $B^*B, B^*D, B_s^*B_s, D^*D$, this interaction will be supressed.
- \triangleright With $C_h = 3$, color Coulomb attraction, this is not present for two-meson thresholds.

Possible states:
$$\overline{b}\overline{b}ud, \overline{b}\overline{b}us, \overline{b}\overline{b}uc, \overline{b}\overline{b}sc, \overline{b}\overline{c}ud, \overline{b}\overline{c}us$$
 etc.

Possible heavy tetraquarks

Junnarkar, NM and Padmanath: Phys. Rev. D99, 034507 (2019)

Quark mass dependence of the binding energy

Pentaquarks

LHCb: Phys. Rev. Lett. 117, 082003 (2016)

Mass (MeV)	Width (MeV)	Fit fraction (%)
4380±8±29	205±18±86	8.4±0.7±4.2
4449.8±1.7±2.5	39±5±19	4.1±0.5±1.1

Quantum numbers (J^P): [3/2⁻ and 5/2⁺] or [3/2⁺ and 5/2⁻]

Weak interaction and Lattice QCD

- ♣ Lattice QCD is needed
 - > to interpret flavour physics data
 - > to extract the values of CKM matrix elements
- Most extensions of the Standard Model contain new CP- violating phases, new quark flavour-changing interactions
 - → New Physics effects expected in the quark flavour sector
- ♣ To describe weak interaction involving quarks, one must include effects of confining quarks into hadrons.
- ♣ Typically most non-perturbative QCD effects get absorbed into hadronic matrix elements such as decay constants, form factors and bag parameters
- ♣ So far, Lattice QCD is the best tool to calculate non-perturbative QCD effects with controlled systematics.

Using LQCD we can calculate two, three and four point functions with control systematics

Weak matrix elements

$$rac{d\Gamma(B o\pi\ell
u)}{dq^2},rac{d\Gamma(B o D^{(*)}\ell
u)}{dw},\ldots$$

Compute nonperturbative QCD parameters (decay constants, form factors, B-parameters,...) numerically with **LATTICE QCD**

@Van de Water

 $(Experiment) = (known) \times (CKM factors) \times (Hadronic Matrix Element)$

CKM matrix elements and lattice calculations

$$\begin{pmatrix} \mathbf{V_{ud}} & \mathbf{V_{us}} & \mathbf{V_{ub}} \\ \pi \to \ell \nu & K | \to \ell \nu & B \to \ell \nu \\ K \to \pi \ell \nu & B \to \pi \ell \nu \end{pmatrix}$$

$$\mathbf{V_{cd}} & \mathbf{V_{cs}} & \mathbf{V_{cb}}$$

$$D \to \ell \nu & D_s \to \ell \nu & B \to D \ell \nu \\ D \to \pi \ell \nu & D \to K \ell \nu & B \to D^* \ell \nu \end{pmatrix}$$

$$\mathbf{V_{td}} & \mathbf{V_{ts}} & \mathbf{V_{tb}}$$

$$\langle B_d | \bar{B}_d \rangle & \langle B_s | \bar{B}_s \rangle \\ B \to \pi \ell \ell & B \to K \ell \ell \end{pmatrix}$$

"Gold plated" processes on the lattice -> CKM matrix elements

- One hadron in the initial state and zero or one hadron in the final state
- Stable hadrons (that is narrow or far from threshold → easier to study on lattice)
- Chiral extrapolation is controllable

Decay constants from Lattice QCD

In SM:

$$\Gamma(H \to \ell \nu) = \frac{M_H}{8\pi} f_H^2 \left| G_F V_{Qq}^* m_\ell \right|^2 \left(1 - \frac{m_\ell^2}{M_H^2} \right)^2,$$

Pseudoscalar to vacuum matrix element of the axial current pseudoscalar decay constant

$$\langle 0|\mathcal{A}^{\mu}|H(p)\rangle = ip^{\mu}f_{H},$$

 $\langle 0|\mathcal{A}^{\mu}|H(p)\rangle (M_{H})^{-1/2} = i(p^{\mu}/M_{H})\phi_{H}$
 $f_{H} = \phi_{H}/\sqrt{M_{H}}$

$$\begin{array}{c|ccc}
H & \mathcal{A}^{\mu} & V \\
\hline
D & \bar{d}\gamma^{\mu}\gamma^{5}c & V_{cd}^{*} \\
D_{s} & \bar{s}\gamma^{\mu}\gamma^{5}c & V_{cs}^{*} \\
B & \bar{b}\gamma^{\mu}\gamma^{5}u & V_{ub} \\
B_{s} & \bar{b}\gamma^{\mu}\gamma^{5}s & --
\end{array}$$

Renormalization constant (to match with continuum physics):

$$Z_{A^{\mu}}A^{\mu} \doteq \mathcal{A}^{\mu} + \mathcal{O}(\alpha_s a \Lambda f_i(m_Q a)) + \mathcal{O}(a^2 \Lambda^2 f_j(m_Q a))$$

Leptonic decay constants

Need to calculate two point correlation functions:

$$\varphi(t) = e^{Ht} \varphi(0) e^{-Ht}$$

$$G(t, \vec{p}) = \sum_{\vec{x}} e^{-i\vec{p}.(\vec{x} - \vec{x}_0)} \sum_{n, \vec{q}} \langle 0 | \varphi(x) | n, \vec{q} \rangle \langle n, \vec{q} | \varphi(x_0) | 0 \rangle$$

$$= \sum_{n} e^{-E_p^n(t - t_0)} |\langle 0 | \varphi(x_0) | n, \vec{p} \rangle|^2$$

$$= \sum_{n} W_n e^{-E_p^n(t - t_0)} \xrightarrow[t \to \infty]{} W_1 e^{-E_1^n(t - t_0)}$$

Two point function

Two and three point functions

$$C_2^{\eta_c}(t) = \sum_i (A_{\eta_c}^i)^2 e^{-E_{\eta_c}^i t}$$

$$C_2^{B_c}(\tau) = \sum_i (A_{B_c}^i)^2 e^{-E_{B_c}^i \tau}$$

$$C_{3,m}^{B_c \to \eta_c}(t,\tau) = \sum_{i,j} A_{\eta_c}^i \varphi^m A_{B_c}^j e^{-E_{\eta_c}^i t} e^{-E_{B_c}^i \tau}$$

 $\boldsymbol{\varphi^m}$: Can be obtained by

- > fitting these two and three point function simultaneously
- constructing appropriate ratios

Meson Decay Constants

$$f_{D^0} = 211.6(0.3)_{\text{stat}}(0.5)_{\text{syst}}(0.2)_{f_{\pi,\text{PDG}}}[0.2]_{\text{EM-scheme}} \text{ MeV},$$

 $f_{D^+} = 212.7(0.3)_{\text{stat}}(0.4)_{\text{syst}}(0.2)_{f_{\pi,\text{PDG}}}[0.2]_{\text{EM-scheme}} \text{ MeV},$
 $f_{D_s} = 249.9(0.3)_{\text{stat}}(0.2)_{\text{syst}}(0.2)_{f_{\pi,\text{PDG}}}[0.2]_{\text{EM-scheme}} \text{ MeV},$
 $f_{B^+} = 189.4(0.8)_{\text{stat}}(1.1)_{\text{syst}}(0.3)_{f_{\pi,\text{PDG}}}[0.1]_{\text{EM-scheme}} \text{ MeV},$
 $f_{B^0} = 190.5(0.8)_{\text{stat}}(1.0)_{\text{syst}}(0.3)_{f_{\pi,\text{PDG}}}[0.1]_{\text{EM-scheme}} \text{ MeV},$
 $f_{B_s} = 230.7(0.8)_{\text{stat}}(1.0)_{\text{syst}}(0.2)_{f_{\pi,\text{PDG}}}[0.2]_{\text{EM-scheme}} \text{ MeV}.$

MILC: PRD98 (2018) no.7, 074512, arXiv:1810.00250

Decay Constants

FLAG 2019: arXiv:1902.08191v2

$$N_f = 2 + 1 + 1$$
: $f_D = 212.0(0.7) \text{ MeV}$

$$N_f = 2 + 1 + 1$$
: $f_{D_s} = 249.9(0.5) \text{ MeV}$

$$N_f = 2 + 1 + 1:$$
 $\frac{f_{D_s}}{f_D} = 1.1783(0.0016)$

FNAL/MILC: Phys. Rev. D98 (2018) 074512

ETM: Phys. Rev. D91 (2015) 054507

Semileptonic form factors

$$\left(egin{array}{cccc} \mathbf{V_{ud}} & \mathbf{V_{us}} & \mathbf{V_{ub}} \ \pi
ightarrow \ell
u & K
ightarrow \ell
u & K
ightarrow \ell
u & K
ightarrow \pi \ell
u & V_{\mathbf{cd}} & V_{\mathbf{cs}} & V_{\mathbf{cb}} \ D
ightarrow \ell
u & D
ightarrow \ell
u & D
ightarrow K \ell
u & B
ightarrow D^* \ell
u & V_{\mathbf{td}} & V_{\mathbf{ts}} & V_{\mathbf{tb}} \ B_d
ightarrow \overline{B}_d & B_s
ightarrow \overline{B}_s \end{array}
ight)$$

SM:

$$\frac{d\Gamma(D\to P\ell\nu)}{dq^2} = \frac{G_F^2|V_{cx}|^2}{24\pi^3} \frac{(q^2 - m_\ell^2)^2 \sqrt{E_P^2 - m_P^2}}{q^4 m_D^2} \left[\left(1 + \frac{m_\ell^2}{2q^2} \right) m_D^2 (E_P^2 - m_P^2) |f_+(q^2)|^2 + \frac{3m_\ell^2}{8q^2} (m_D^2 - m_P^2)^2 |f_0(q^2)|^2 \right]$$

$$\langle P|V_{\mu}|D\rangle = f_{+}(q^{2})\left(p_{D\mu} + p_{P\mu} - \frac{m_{D}^{2} - m_{P}^{2}}{q^{2}}\,q_{\mu}\right) + f_{0}(q^{2})\frac{m_{D}^{2} - m_{P}^{2}}{q^{2}}\,q_{\mu}\,, \qquad \pmb{V_{\mu}} = \overline{\pmb{x}}\pmb{\gamma_{\mu}}\pmb{c}$$

$$\frac{d\Gamma(D\to P\ell\nu)}{dq^2} = \frac{G_{\rm F}^2}{24\pi^3} |\vec{p}_P|^3 |V_{cx}|^2 |f_+(q^2)|^2$$
 | V_{cd} | and | V_{cs} |

$$\langle P|T_{\mu\nu}|D\rangle = \frac{2}{m_D + m_P} \left[p_{P\mu} p_{D\nu} - p_{P\nu} p_{D\mu} \right] f_T(q^2)$$

Parity even current: BSM physics

Semileptonic form factors

$$egin{pmatrix} \mathbf{V_{ud}} & \mathbf{V_{us}} & \mathbf{V_{ub}} \ \pi
ightarrow \ell
u & K
ightarrow \ell
u & K
ightarrow \ell
u & K
ightarrow \pi \ell
u & V_{cd} & V_{cs} & V_{cb} \ D
ightarrow \ell
u & D
ightarrow \ell
u & D
ightarrow \ell
u & D
ightarrow \kappa \ell
u & D
ightarrow \kappa \ell
u & D
ightarrow \kappa \ell
u & V_{ts} & V_{tb} \ U
ightarrow \ell
u & U_{ts} & V_{tb} \ U
ightarrow \ell
u & U_{ts} & U_{tb} \ U
ightarrow \ell
u & U_{ts} & U_{tb} \ U
ightarrow \ell
u & U_{ts} & U_{tb} \ U
ightarrow \ell
u & U_{ts} & U_{tb} \ U
ightarrow \ell
u & U_{ts} & U_{tb} \ U
ightarrow \ell
u & U_{ts} & U_{tb} \ U
ightarrow \ell
u & U_{ts} & U_{tb} \ U
ightarrow \ell
u & U_{ts} & U_{tb} \ U
ightarrow \ell
u & U_{ts} & U_{tb} \ U
ightarrow \ell
u & U_{ts} & U_{tb} \ U
ightarrow \ell
u & U_{ts} & U_{tb} \ U
ightarrow \ell
u & U_{ts} & U_{tb} \ U
ightarrow \ell
u & U_{ts} & U_{tb} \ U
ightarrow \ell
u & U_{ts} & U_{tb} \ U
ightarrow \ell
u & U_{ts} & U_{tb} \ U
ightarrow \ell
u & U_{ts} & U_{tb} \ U
ightarrow \ell
u & U_{ts} & U_{tb} \ U
ightarrow \ell
u & U_{ts} & U_{tb} \ U
ightarrow \ell
u & U_{ts} & U_{tb} \ U
ightarrow \ell
u & U_{ts} & U_{tb} \ U
ightarrow \ell
u & U_{ts} & U_{tb} \ U
ightarrow \ell
u & U_{ts} & U_{tb} \ U
ightarrow \ell
u & U_{ts} & U_{tb} \ U
ightarrow \ell
u & U_{ts} & U_{tb} \ U
ightarrow \ell
u & U_{ts} & U_{tb} \ U
ightarrow \ell
u & U_{ts} & U_{tb} \ U
ightarrow \ell
u & U_{ts} & U_{tb} \ U
ightarrow \ell
u & U_{ts} & U_{tb} \ U
ightarrow \ell
u & U_{ts} & U_{tb} \ U
ightarrow \ell
u & U_{ts} & U_{tb} \ U
ightarrow \ell
u & U_{ts} & U_{tb} \ U
ightarrow \ell
u & U_{ts} & U_{tb} \ U
ightarrow \ell
u & U_{ts} & U_{tb} \ U
ightarrow \ell
u & U_{ts} & U_{tb} \ U
ightarrow \ell
u & U_{ts} & U_{tb} \ U
ightarrow \ell
u & U_{ts} & U_{tb} \ U
ightarrow \ell
u & U_{ts} & U_{tb} \ U
ightarrow \ell
u & U_{ts} & U_{tb} \ U
ightarrow \ell
u & U_{ts} & U_{tb} \ U
ightarrow \ell
u & U_{ts} & U_{tb} \ U
ightarrow \ell
u & U_{ts} & U_{tb} \ U
ightarrow \ell
u & U_{ts} & U_{tb} \ U
ightarrow \ell \ U
i$$

Need to calculate three point function:

$$\begin{array}{l} G^{\alpha\beta}_{PT_{\mu}\ P}(t_{2},t_{1},\vec{p},\vec{p'}) \ = \ \sum_{\vec{x_{2}},\vec{x_{1}}} e^{-i\vec{p}\cdot\vec{x_{2}}} e^{-i\vec{q}\cdot\vec{x_{1}}} \\ \\ < 0 | \, \mathsf{T} \left(\chi^{\alpha}(x_{2}) \, T_{\mu} \, \left(x_{1} \right) \bar{\chi}^{\beta}(0) \right) \, | \, 0 > \end{array}$$

Form Factors ($D_{q,s}$ semi-leptonic decay)

$$N_f = 2 + 1:$$

$$f_+^{D\pi}(0) = 0.666(29)$$

$$f_+^{DK}(0) = 0.747(19)$$

HPQCD: Phys.Rev. D82 (2010) 114506, Phys.Rev. D84 (2011) 114505

$$N_f = 2 + 1 + 1:$$

$$f_+^{D\pi}(0) = 0.612(35)$$

$$f_+^{DK}(0) = 0.765(31)$$

ETM: Phys. Rev. D96 (2017) 054514

$$\begin{split} N_f &= 2 + 1 + 1: & |V_{cd}| = 0.2219(43) \,, & |V_{cs}| = 1.002(14) \,, \\ N_f &= 2 + 1: & |V_{cd}| = 0.2182(50) \,, & |V_{cs}| = 0.999(14) \,, \\ N_f &= 2: & |V_{cd}| = 0.2207(89) \,, & |V_{cs}| = 1.031(30) \,, \end{split}$$

$$N_f = 2 + 1 + 1$$
: $|V_{cd}|^2 + |V_{cs}|^2 + |V_{cb}|^2 - 1 = 0.05(3)$, $N_f = 2 + 1$: $|V_{cd}|^2 + |V_{cs}|^2 + |V_{cb}|^2 - 1 = 0.05(3)$, $|V_{cd}|^2 + |V_{cs}|^2 + |V_{cb}|^2 - 1 = 0.11(6)$.

FLAG 2019: arXiv:1902.08191v2

$$\Gamma(B \to l \nu) = \frac{m_B}{8\pi} G_F^2 f_B^2 |V_{ub}|^2 m_l^2 \left(1 - \frac{m_l^2}{m_B^2}\right)^2$$

FCNC process
$$B(B_q \to \ell^+ \ell^-) = \tau_{B_q} \frac{G_F^2}{\pi} Y \left(\frac{\alpha}{4\pi \sin^2 \Theta_W} \right)^2 m_{B_q} f_{B_q}^2 |V_{tb}^* V_{tq}|^2 m_\ell^2 \sqrt{1 - 4 \frac{m_\ell^2}{m_B^2}}$$

 $f_B = 190.0(1.3) \text{ MeV}$ $f_{B_s} = 230.3(1.3) \text{ MeV}$ $\frac{f_{B_s}}{f_B} = 1.209(0.005)$ **HPQCD:** Phys. Rev. Lett. 110 (2013) 222003, Phys. Rev. D97 (2018) 054509

FNAL/MILC: Phys. Rev. D98 (2018) 074512

ETM: Phys. Rev. D93 (2016) 114505

Form Factors (B_x semi-leptonic decay)

$$\frac{d\Gamma(B_{(s)}\to P\ell\nu)}{dq^2} = \frac{G_F^2|V_{ub}|^2}{24\pi^3} \frac{(q^2-m_\ell^2)^2\sqrt{E_P^2-m_P^2}}{q^4m_{B_{(s)}}^2} \left[\left(1 + \frac{m_\ell^2}{2q^2}\right) m_{B_{(s)}}^2 (E_P^2 - m_P^2)|f_+(q^2)|^2 + \frac{3m_\ell^2}{8q^2} (m_{B_{(s)}}^2 - m_P^2)^2|f_0(q^2)|^2 \right]$$

Neutral B-meson mixing

$$\langle \overline{B}_{q}^{0} | H_{eff}^{\Delta B=2} | B_{q}^{0} \rangle$$
 $H_{eff,BSM}^{\Delta B=2} = \sum_{q=d,s} \sum_{i=1}^{5} C_{i} Q_{i}^{q}$

Bag Parameter:
$$B_{B_q}(\mu) = \frac{\left\langle \overline{B}_q^0 \middle| Q_R^q(\mu) \middle| B_q^0 \right\rangle}{\frac{8}{3} f_B^2 m_B^2}$$

$$\mathcal{Q}_{1}^{q} = \left[\bar{b} \gamma_{\mu} (1 - \gamma_{5}) q \right] \left[\bar{b} \gamma_{\mu} (1 - \gamma_{5}) q \right]
\mathcal{Q}_{2}^{q} = \left[\bar{b} (1 - \gamma_{5}) q \right] \left[\bar{b} (1 - \gamma_{5}) q \right] ,
\mathcal{Q}_{4}^{q} = \left[\bar{b} (1 - \gamma_{5}) q \right] \left[\bar{b} (1 + \gamma_{5}) q \right] ,
\mathcal{Q}_{3}^{q} = \left[\bar{b}^{\alpha} (1 - \gamma_{5}) q^{\beta} \right] \left[\bar{b}^{\beta} (1 - \gamma_{5}) q^{\alpha} \right] ,
\mathcal{Q}_{5}^{q} = \left[\bar{b}^{\alpha} (1 - \gamma_{5}) q^{\beta} \right] \left[\bar{b}^{\beta} (1 + \gamma_{5}) q^{\alpha} \right] ,$$

$$\hat{B}_{B_q} = \left(\frac{\bar{g}(\mu)^2}{4\pi}\right)^{-\gamma_0/(2\beta_0)} \left\{ 1 + \frac{\bar{g}(\mu)^2}{(4\pi)^2} \left[\frac{\beta_1 \gamma_0 - \beta_0 \gamma_1}{2\beta_0^2} \right] \right\} B_{B_q}(\mu)$$

$$\Delta m_q = \frac{G_F^2 m_W^2 m_{B_q}}{6\pi^2} |\lambda_{tq}|^2 S_0(x_t) \eta_{2B} f_{B_q}^2 \hat{B}_{B_q} \qquad \lambda_{tq} = V_{tq}^* V_{tb}$$

$$\xi^2 = \frac{f_{B_s}^2 B_{B_s}}{f_{B_d}^2 B_{B_d}}$$

Neutral B-meson mixing

$$f_{B_d}\sqrt{\hat{B}_{B_d}} = 225(9) \,\text{MeV} \quad f_{B_s}\sqrt{\hat{B}_{B_s}} = 274(8) \,\text{MeV}$$

$$f_{B_s} \sqrt{\hat{B}_{B_s}} = 274(8) \,\text{MeV}$$

$$\hat{B}_{B_d} = 1.30(10)$$

$$\hat{B}_{B_s} = 1.35(6)$$

$$\xi = 1.206(17)$$

$$\xi = 1.206(17)$$
 $B_{B_s}/B_{B_d} = 1.032(38)$

FNAL/MILC: Phys. Rev. D93 (2016) 113016,

RBC/UKQCD: Phys. Rev. D91 (2015) 114505,

HPQCD: Phys.Rev. D80 (2009) 014503,

$$R(D) = \mathcal{B}(B \to D\tau\nu)/\mathcal{B}(B \to D\ell\nu)$$
 with $\ell = e, \mu$

$$R(D) = 0.300(8)$$
 $R(D_s) = 0.314(6)$

MILC: Phys. Rev. D92 (2015) 034506,

HPQCD: Phys. Rev. D92 (2015) 054510

Rare decay:

$$B_s \rightarrow \mu^+\mu^-$$

LHCb, **CMS**: Nature 522 (2015) 68

$$f_0^{(s)}(M_\pi^2)/f_0^{(d)}(M_K^2) = 1.046(44)(15),$$

 $f_0^{(s)}(M_\pi^2)/f_0^{(d)}(M_\pi^2) = 1.054(47)(17)$

MILC: Phys.Rev. D85 (2012) 114502

$$f_0^{(s)}(M_\pi^2)/f_0^{(d)}(M_K^2) = 1.000(62)$$

 $f_0^{(s)}(M_\pi^2)/f_0^{(d)}(M_\pi^2) = 1.006(62)$

HPQCD: Phys. Rev. D95 (2017) 114506

$$\mathcal{R}(J/\psi) = \frac{\mathcal{B}(B_c^+ \to J/\psi \tau^+ \nu_\tau)}{\mathcal{B}(B_c^+ \to J/\psi \mu^+ \nu_\mu)} = 0.71 \pm 0.17 \text{ (stat) } \pm 0.18 \text{ (syst)}.$$

SM: 0.25-0.28

LHCb: Phys. Rev. Lett. 120 (2018) no.12, 121801

Form factors

■ $B_C \rightarrow \eta_c l \nu$

$$\langle \eta_c(p)|V^{\mu}|B_c(P)\rangle = f_+(q^2)\left[P^{\mu} + p^{\mu} - \frac{M^2 - m^2}{q^2}q^{\mu}\right] + f_0(q^2)\frac{M^2 - m^2}{q^2}q^{\mu}$$

■ $B_C \rightarrow J/\psi l \nu$

$$\langle J/\psi(p,\varepsilon)|V^{\mu}-A^{\mu}|B_{c}(P)\rangle = \frac{2i\varepsilon^{\mu\nu\rho\sigma}}{M+m}\varepsilon_{\nu}^{*}p_{\rho}P_{\sigma}V(q^{2}) - (M+m)\varepsilon^{*\mu}A_{1}(q^{2}) + \frac{\varepsilon^{*}\cdot q}{M+m}(p+P)^{\mu}A_{2}(q^{2}) + 2m\frac{\varepsilon^{*}\cdot q}{q^{2}}q^{\mu}A_{3}(q^{2}) - 2m\frac{\varepsilon^{*}\cdot q}{q^{2}}q^{\mu}A_{0}(q^{2})$$

$$q = P - p$$

 $q^2_{
m max}$: Outgoing hadron at rest

 $q^2 = 0$: Maximum recoil

Colquhoun et al HPQCD: 1611.01987

A. Lytle : CKM2016

NM: Lattice 2017

Semileptonic form factors in baryon decays

$$\Lambda_c \to \Lambda \ell \nu$$

Alternate ways to get $|V_{cs}|$

$$\langle \Lambda | \bar{s} \gamma^{\mu} (1 - \gamma_5) c | \Lambda_c \rangle$$

$$\frac{\Gamma(\Lambda_c \to \Lambda e^+ \nu_e)}{|V_{cs}|^2} = 0.2007(71)(74) \text{ ps}^{-1},$$

$$\frac{\Gamma(\Lambda_c \to \Lambda \mu^+ \nu_\mu)}{|V_{cs}|^2} = 0.1945(69)(72) \text{ ps}^{-1}.$$

 $\Lambda_b \to p\ell\nu$

 $\Lambda_b \to \Lambda_c \ell \nu$

Alternate ways to get $|V_{bu}|$

Alternate ways to get $|V_{hc}|$

Detmold et. al.: Phys. Rev. D92 (2015) 034503,

Possibility of exclusive determination of |Vub|/|Vcb|

S. Meinel, Phys. Rev. Lett. 118 (2017) 082001

Conclusions and Outlooks

- **4** There is a tremendous resurgence of interest in the study of bound states with heavy quark(s).
 - **LQCD** plays important roles for discovering many of these particles by predicting their possible energy values. Lattice QCD also plays crucial role in understanding the structures and interactions of these particles.
 - **LQCD** can provide important information about the dynamics of strong interactions at multiple scales.
- **Lattice QCD** is playing a crucial role in determining decay constants and form factors of heavy hadrons and in turn helping in precise determination of the CKM matrix elements.
- **4** Heavy flavour physics is a precision tool to discover new physics. Lattice QCD calculations are absolutely necessary for this.

$$\langle \eta_c(p')|V^{\mu}|B_c(p)\rangle = f_+(q^2)(p+p')^{\mu} + \left(f_0(q^2) - f_+(q^2)\right) \frac{M_{B_c}^2 - M_{\eta_c}^2}{q^2} (p-p')^{\mu},$$

$$\frac{d\Gamma}{dq^2}(B_c^+ \to \eta_c \,\ell^+ \,\nu) = \frac{\eta_{ew}^2 G_F^2 |V_{cb}|^2 M_{B_c} \sqrt{\lambda}}{192\pi^3} \left(1 - \frac{m_\ell^2}{q^2}\right)^2 \left[c_+ f_+(q^2)^2 + c_0 f_0(q^2)^2\right]$$

$$\lambda \equiv \lambda(q^2, M_{B_c}^2, M_{\eta_c}^2), \text{ where } \lambda(a,b,c) = a^2 + b^2 + c^2 - 2(ab + bc + ca),$$

$$c_{+} = \frac{\lambda}{M_{B_c}^4} \left(1 + \frac{m_{\ell}^2}{2q^2} \right), \quad c_{0} = (1 - r^2)^2 \frac{3m_{\ell}^2}{2q^2}, \quad r = \frac{M_{\eta_c}}{M_{B_c}}.$$

Decay

Decay into two mesons :

$$E(Q\overline{q})+E(Q\overline{q}')-Eig(Q^2\overline{q}\overline{q}'ig)pprox rac{2}{9}mlpha_s^2\left[1+Oig(m^{-1}ig)
ight]>0$$
 (Positive)

For sufficiently large m this should be bound! Carlson, Heller, Tjon PRD 37, 744 (1988) No decay to two mesons

Decay into 2 baryons :

$$E(qq'q'') + E(\overline{q}''\overline{Q}\overline{Q}) - E(\overline{q}\overline{q}'\overline{Q}\overline{Q}) = E(qq'q'') + E(\overline{q}''Q) - E(qq'Q)$$

$$\geq E(\text{proton}) + E(\overline{q}''Q) - E(qq'Q)$$

For known charm and bottom masses right hand side is positive

Therefore, no strong decay to two baryons

Eichten, Quigg, PRL 199, 202002 (2017)

$$V_C = \sum_{i>j} \alpha_s \frac{F_i \cdot F_j}{r_{ij}}$$

$$F_i.F_j=-2/3$$
 in $\overline{3}$
Bohr radius $a=\frac{3}{m\alpha_s}$
$$E(Q^2)\approx -\frac{1}{9}m\alpha_s^2$$

$$E(Q\overline{q})+E(Q\overline{q}')-E(Q^2\overline{q}\overline{q}')\approx \frac{2}{9}m\alpha_s^2\left[1+O(m^{-1})\right]$$