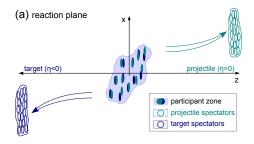
Probing initial condition of heavy ion collisions with heavy flavor

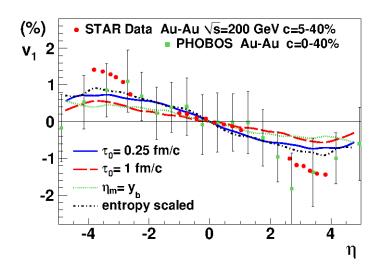
Sandeep Chatterjee IISER Berhampur

3rd Heavy Flavor Meet, IIT Indore 18-20 March, 2019

which specific initial conditions?

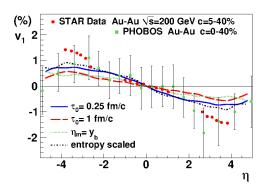

- rapidity profile of the fireball: the longitudinal (along the beam) deposition of entropy in the initial state
- the produced electromagnetic fields: mainly by the proton spectators

advantages of heavy flavor as a probe of this early time physics


- already discussed several times
- distinct production mechanism: mainly produced in the initial state by hard binary collisions
- longer time to thermalize with the medium

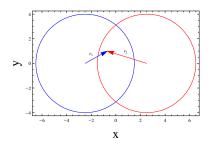
the sign convention of directed flow v_1

• the directed 'flow/motion' of the spectators flying along positive rapidity is positive; which also sets the direction of the B field along negative y and a clockwise charged current (response of the medium with conductivity), i.e. E field along negative x at $\eta>0$

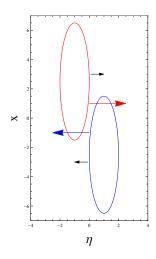


charged particle v₁

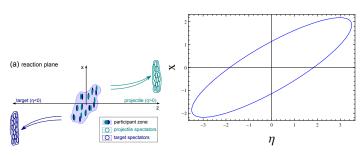
Tilted bulk \rightarrow directed fluid velocity \rightarrow charged particle v_1


Tilted bulk: Brodsky et. al. 1977; Adil, Gyulassy 2005; Bialas, Czyz 2005

Bożek, Wyskiel 2010


- Tilted IC captures the charged particle v_1
- small v_1

entropy deposition in non-central collision


$$r_1 < r_2 \rightarrow \rho(r_1) > \rho(r_2)$$

entropy deposition in non-central collision

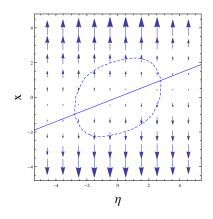
entropy deposition from participant sources

Tilted bulk: Brodsky et. al. 1977; Adil, Gyulassy 2005; Bialas, Czyz 2005

Bulk profile

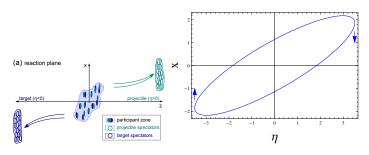
Initial condition for a tilted fireball

$$\begin{array}{lcl} s\left(\tau_{0},x,y,\eta_{||}\right) & = & s_{0}\left[\alpha N_{coll} + \left(1-\alpha\right)\left(N_{part}^{+}f_{+}\left(\eta_{||}\right) + \right.\right.\\ & & \left.\left.\left.\left(N_{part}^{-}f_{-}\left(\eta_{||}\right)\right)\right]f\left(\eta_{||}\right) \end{array}$$


$$f\left(\eta_{||}\right) \hspace{2mm} = \hspace{2mm} \exp\left(-\theta\left(|\eta_{||}|-\eta_{||}^{0}\right)\frac{\left(|\eta_{||}|-\eta_{||}^{0}\right)^{2}}{2\sigma^{2}}\right)$$

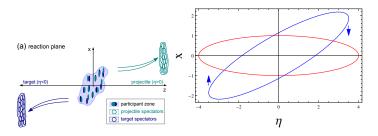
$$f_{+}\left(\eta_{||}
ight) = \left\{egin{array}{ll} 0, & \eta_{||} < -\eta_{\mathcal{T}} \ rac{1}{2} + rac{\eta_{||}}{2\eta_{\mathcal{T}}}, & -\eta_{\mathcal{T}} \leq \eta_{||} \leq \eta_{\mathcal{T}} \ 1, & \eta_{||} > \eta_{\mathcal{T}} \end{array}
ight.$$

with $f_{-}\left(\eta_{||}\right)=f_{+}\left(-\eta_{||}\right)$ (rapidity-odd component)


Bożek, Wyskiel 2010

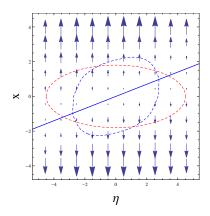
Tilted bulk \rightarrow directed fluid velocity

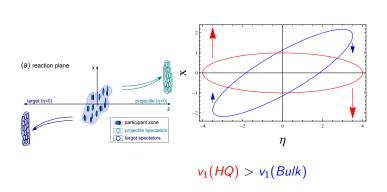
Tilted bulk → directed fluid velocity


Tilted bulk: Brodsky et. al. 1977; Adil, Gyulassy 2005; Bialas, Czyz 2005

Bulk directed flow

entropy depositing sources: participant vs binary collision sources

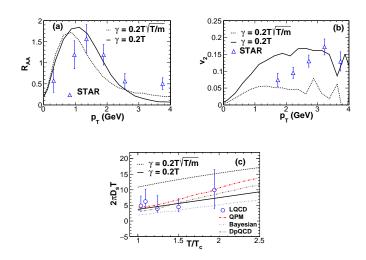

HQ from hard processes → FB-symmetric Rapidity-even HQ dragged by Rapidity-odd bulk


Bulk vs heavy flavor

Heavy Quark Tomography

charm, anti-charm stronger probes of the tilt than the light flavor

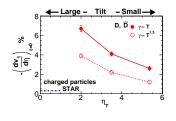
entropy depositing sources: participant vs binary collision sources

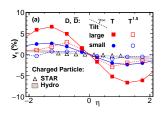


to quantify the heavy flavor v_1

need to calibrate

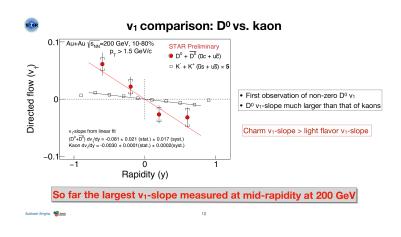
- the tilt of the bulk: constrained by charged particle v_1 , Bożek, Wyskiel 2010
- drag between the bulk and heavy flavor: constrained by heavy flavor R_{AA} and v_2 at mid-rapidity, we use an ansatz $\gamma = \gamma_0 T \left(\frac{T}{m}\right)^x$

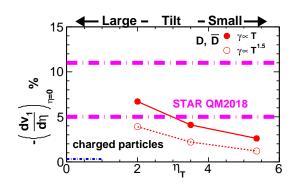

Calibrating the drag on HQs



SC, Bożek 2018

HQ v_1 $\mathcal{O}(10)$ larger!

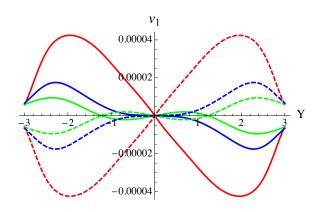

predicted to be 5 - 20 times larger than charged particle v_1 slope!


SC, Bożek 2018

QM 2018: heavy flavor is pushed 30 times more than bulk !!

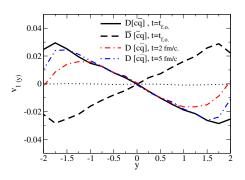
comparison to data

largest measured v_1 : order of magnitude larger than that of charged particle



SC, Bożek 2018

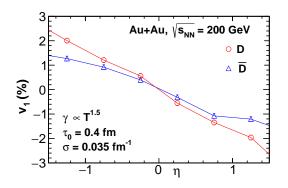
which specific initial conditions?


- rapidity profile of the fireball: the longitudinal (along the beam) deposition of entropy in the initial state
- the produced electromagnetic fields: mainly by the proton spectators

v_1 split between positive and negative charged particles due to EM field

Gursoy, Kharzeev, Rajagopal 2014

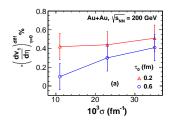
1000 times stronger split in D^0 - $\overline{D^0}$

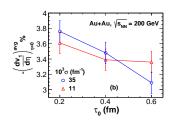

Das, Plumari, SC, Alam, Scardina, Greco 2016

•

$$\begin{array}{lcl} v_{1}^{\text{avg}} & = & \frac{1}{2} \left(v_{1} \left(D^{0} \right) + v_{1} \left(\overline{D^{0}} \right) \right) \\ v_{1}^{\text{diff}} & = & v_{1} \left(D^{0} \right) - v_{1} \left(\bar{D^{0}} \right) \end{array}$$

 $\bullet \ \, \text{Tilt:} \ \, \nu_1^{\text{avg}} \neq 0, \, \, \nu_1^{\text{diff}} = 0; \, \text{EM:} \, \, \nu_1^{\text{avg}} = 0, \, \nu_1^{\text{diff}} \neq 0; \\$

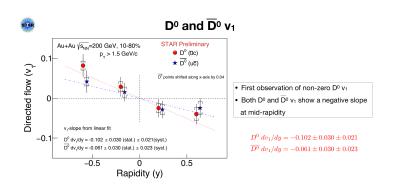

HQ v₁ with Tilt+EM field



•
$$v_1^{\text{avg}} \neq 0$$
, $v_1^{\text{diff}} \neq 0$

SC, Bożek 2018

Dependence on conductivity and initialization time



SC, Bożek 2018

• note: Δv_1 is predicted due to EM; however, sign of Δv_1 is a matter of details in the parameter space (τ_0, σ)

QM 2018: hint of split in v_1 of D^0 and $\overline{D^0}$ at STAR

Subhash Singha, Washin

Hard Probes 2018: hint of split (opp. sign) in v_1 of D^0 and $\overline{D^0}$ at ALICE

Summarising

- Heavy flavor directed flow as a probe of 2 initial state physics was discussed: longitudinal profile of matter distribution and the electromagnetic field and medium conductivity
- Order of magnitude larger average v_1 was predicted for heavy flavor compared to bulk: hints from STAR data as well
- 1000 times stronger split in v_1 of D and \overline{D} than in light flavor sector predicted due to EM field: hint of split seen at STAR and ALICE; however they seem to be of opposite sign
- Detailed model study of the parameter space like au_0 , σ etc needed; also to be noted that ALICE has $p_T > 3$ GeV while STAR $p_T > 1.5$ GeV
- Opens door to study of the longitudinal geometry; extraction
 of the electric conductivity of hot and dense QCD; measuring
 the strongest EM fields → crucial input to search and
 modelling of the chiral magnetic effect

