

Heavy-Flavour production in small systems

Alessandro Grelli

Open heavy-flavour production

pp collisions:

- Test pQCD calculations
- Study fragmentation and hadronisation, heavy-flavour jet properties
- Set a reference for p-Pb and Pb-Pb

p-Pb collisions

- Study cold nuclear matter (CNM) effects (nPDF, shadowing, gluon saturation, k_T -broadening, energy loss in CNM in the initial and final state)
- Address possible collective effects and effects related to the (possible) formation of a QGP in p-Pb collisions.

Charm hadronization in vacuum

- Do we understand it?
 - Lc[Xic]/D0 ratio in pp and p-Pb: ALICE vs LHCb
 - Possible implications of the experimental result

Heavy-Flavours at LHC

☑ D mesons in hadronic decay channels (D⁰, D*+, D+, D_s)

.. fairly similar reconstruction strategy among different experiments: Invariant mass analysis after topological and PID cuts

- ☑ Charmed baryons in hadronic and semileptonic channels
- ☑ B mesons in hadronic decay channels
- Heavy-flavour decay leptons
- Heavy flavour jets

HF production cross-sections

ALICE: HFE at 7 TeV

- We are entering a precison hera for the charm measurements in pp collisions.
- ☑ Data points, at few % level precision, start to pose strong constraints for pQCD based models

HF production cross-sections

- We are entering a precison hera for the charm measurements in pp collisions.
- ☑ Data points, at few % level precision, start to pose strong constraints for pQCD based models

HF production cross-sections

- We are entering a precison hera for the charm measurements in pp collisions.
- ☑ Data points, at few % level precision, start to pose strong constraints for pQCD based models

D meson ratios

- ☑ D mesons are studied at LHC at different collision energies (2.76, 5.02, 7, 8 and 13 TeV)

ALICE vs LHCb: mid- forward ratio

arXiv:1901.07979

- \square Precise measurement down to ~0 p_T
- Mid-forward ratio can provide sensitivity to gluon PDF at small Bjorken-x (10-4-10-5)
- ☑ Comparison with FONLL show compatibility but tend to hint a different slope

D tagged jets

Charged jets containing a D meson as one of the constituents

- Cross-sections: Agreement with NLO pQCD POWHEG + PYTHIA6 predictions in both systems
 - ✓ D*+-tagged jet result in p-Pb .. see backup
- Momentum fractions: Agreement with NLO pQCD POWHEG + PYTHIA6 predictions
 - Kinematics reach and precision can be extended with pp at 5.02 and 13 TeV

D-h correlations

- Yields at high D p_T : tension with PYTHIA 6,8, while POWHEG closer to data
- Width: hint of smaller width than POWHEG+PYTHIA expectations at low assoc. p_T
- Yields: lower POWHEG predictions w.r.t. PYTHIA 6,8; closer to data

D meson: "trigger" particle, correlated with charged tracks: associated particles

ALI-PREL-307380

Open heavy-flavour production

pp collisions:

- Test pQCD calculations
- Study fragmentation and hadronisation, heavy-flavour jet properties
- Set a reference for p-Pb and Pb-Pb

p-Pb collisions

- Study cold nuclear matter (CNM) effects (nPDF, shadowing, gluon saturation, k_T -broadening, energy loss in CNM in the initial and final state)
- Address possible collective effects and effects related to the (possible) formation of a QGP in p-Pb collisions.

Charm hadronization in vacuum

- Do we understand it?
 - Lc[Xic]/D0 ratio in pp and p-Pb: ALICE vs LHCb
 - O Possible implications of the experimental result

QCD vacuum

p-p

- Cold nuclear matter effects (nPDF, shadowing, gluon saturation, k_Tbroadening, energy loss in CNM in the initial and final state)
- coherent/collective interactions of nuclear fragments, and QGP formation
- final-state interactions with QGP

QCD medium

K.J. Eskola, H. Paukkunen, C. A. Salgado, JHEP 0904, 65 (2009)

K.J. Eskola, H. Paukkunen, C. A. Salgado, JHEP 0904, 65 (2009)

Phys. Rev. Lett. 118 (2017) 072001

D-meson production: p-Pb @ 5.02 TeV

- Production cross-sections measured in a large rapidity interval and down to $\sim 0 p_T$
- ALICE results from LHC run II, LHCb from LHC run I (large improvement in statistic expected with run II data sample)
- General agreement with nPDF calculations

D-meson production: p-Pb @ 8.16 TeV

ATLAS

- Possibility to investigate 5.02 and 8.16 TeV energy regimes at LHC.
- Production well understood even if on the high side of the pQCD based calculations

D-meson R_{pA} - ALICE

$$R_{\rm pA} = \frac{1}{A} \frac{\mathrm{d}\sigma_{\rm pA}/\mathrm{d}p_{\rm T}}{\mathrm{d}\sigma_{\rm pp}/\mathrm{d}p_{\rm T}}$$

Described by models including cold nuclear-matter effects

Described my models including the formation of QGP in p-Pb:

- \rightarrow data disfavour suppression $>\sim 15\%$ at high- p_T
- need to improve the precision of the measurement for a more conclusive statement

D-meson R_{pA} - ALICE

$$R_{\rm pA} = \frac{1}{A} \frac{\mathrm{d}\sigma_{\rm pA}/\mathrm{d}p_{\rm T}}{\mathrm{d}\sigma_{\rm pp}/\mathrm{d}p_{\rm T}}$$

ALICE-PUBLIC-2017-008

- Described by models including cold nuclear-matter effects
- Described my models including the formation of QGP in p-Pb:
 - \rightarrow data disfavour suppression $>\sim 15\%$ at high- p_T
 - → need to improve the precision of the measurement for a more conclusive statement

D-meson forward to backward ratio - LHCb

Data agree with nPDF or CGC but experimental precision much better than the theory one.

CGC:

Phys. Rev. D91 (2015) 114005,

Open heavy-flavour production

pp collisions:

- Test pQCD calculations
- Study fragmentation and hadronisation, heavy-flavour jet properties
- Set a reference for p-Pb and Pb-Pb

p-Pb collisions

- Study cold nuclear matter (CNM) effects (nPDF, shadowing, gluon saturation, k_T -broadening, energy loss in CNM in the initial and final state)
- Address possible collective effects and effects related to the (possible) formation of a QGP in p-Pb collisions.

Charm hadronization in vacuum

- Do we understand it?
 - Lc[Xic]/D0 ratio in pp and p-Pb: ALICE vs LHCb
 - O Possible implications of the experimental result

pp collisions

(CMS Collaboration) JHEP 09, (2010) 091

(d) CMS N \geq 110, 1.0GeV/c<p $_{_{\! T}}<$ 3.0GeV/c

M. He, R. J. Fries and R. Rapp, arXiv:1204.4442 [nucl-th].

pp collisions

(CMS Collaboration) JHEP 09, (2010) 091

(d) CMS N \geq 110, 1.0GeV/c<p $_{_{T}}<$ 3.0GeV/c

- LHC data opened a new hera: detailed study of high-multiplicity events (both in pp and p-A) become possible
- In 2010 CMS Collaboration publish a paper highlighting a double-ridge structure in highmultiplicity pp event di-hadron correaltions

M. He, R. J. Fries and R. Rapp, arXiv:1204.4442 [nucl-th].

pp collisions

(CMS Collaboration) JHEP 09, (2010) 091

(d) CMS N \geq 110, 1.0GeV/c<p $_{_{T}}<$ 3.0GeV/c

- LHC data opened a new hera: detailed study of high-multiplicity events (both in pp and p-A) become possible
- In 2010 CMS Collaboration publish a paper highlighting a double-ridge structure in highmultiplicity pp event di-hadron correaltions

A collective QGP like effect in pp and p-Pb?

(CMS Collaboration) Phys. Lett. B718, (2013) 795

(ALICE Collaboration): Phys. Lett. B719, (2013) 29

pp collisions

(CMS Collaboration) JHEP 09, (2010) 091

(d) CMS N \geq 110, 1.0GeV/c<p $_{-}$ <3.0GeV/c

- LHC data opened a new hera: detailed study of

(CMS Collaboration) Phys. Lett. B71

CMS pPb $\sqrt{s_{NN}}$ = 5.02 TeV, $N_{trk}^{offline}$ \geq $1 < p_{_{
m T}} < 3 \; {\rm GeV/c}$ $\frac{1}{N_{trig}}\frac{d^2N^{pair}}{d\Delta\eta\;d\Delta\varphi}$

Elliptic flow v2 as a measure of collectivity

$$\frac{\mathsf{d}N}{\mathsf{d}\varphi} \propto 1 + 2\sum_{n=1}^{+\infty} v_n \cos\left[n(\varphi - \Psi_n)\right]$$

- Flow: momentum anisotropies in azimuthal angle, quantified by coecients vn
 - Soft sector (low- p_T < 2 GeV/c): multiple interactions between partons (a.k.a. collectivity") convert initial-state (IS) spatial anisotropies into final-state momentum ones
 - Arr Hard sector (high- p_T , > 10 GeV/c): path-length dependent parton energy loss (partons loose energy differently according to how much medium they transverse)

Heavy-flavour collectivity in p-Pb?

Non zero elliptic flow (v_2) as a measure of collectivity

- Indirect hint of non-zero heavy flavour flow in p-Pb from inclusive muons at forward rapidity (p_T >2 GeV/c)
 - \rightarrow High- $p_{\rm T}$ inclusive muons are HF dominated.
 - → Need direct proof (Prompt D mesons, heavy-flavour hadron decay leptons)

HF leptons flow in p-Pb

- Heavy flavour decay electrons (mid-rapidity)
 - Effect is qualitatively similar to the one observed for inclusive muons
 - Significance: $>5\sigma$ for 1.5< p_{Te} < 4 GeV/c
 - Initial or final state effect?
- Heavy flavour decay muons (forward rapidity)
 - Effect is qualitatively similar to the one observed for HFe

Collectivity in the D meson sector?

$$Q_{\rm CP} = \frac{({\rm d}^2 N^{\rm prompt\,D}/{\rm d}p_{\rm T}{\rm d}y)_{\rm pPb}^{0-10}/\langle T_{\rm pPb}\rangle^{0-10}}{({\rm d}^2 N^{\rm prompt\,D}/{\rm d}p_{\rm T}{\rm d}y)_{\rm pPb}^{60-100}/\langle T_{\rm pPb}\rangle^{60-100}}$$

$$R_{\text{pPb}} = \frac{1}{A} \frac{d^2 \sigma_{\text{pPb}}^{\text{promptD}} / dp_{\text{T}} dy}{d^2 \sigma_{\text{pp}}^{\text{promptD}} / dp_{\text{T}} dy}$$

- \blacksquare Hint for D-meson "Central-to-peripheral" ratio (QCP) larger than unity (1.5 σ in 2 < p_T < 8 GeV/c)
- Initial-state effect? Mass effect? Radial flow? ... early to say, need comparison with theoretical calculations.
- However, models that contemplate the production of a small QGP in p-Pb tend to predict a suppression on the D mesons R_{pPb} at high p_T . At present our results tend to disfavour suppressions larger than 10-20%

D-meson v₂ in p-Pb at 8.16 TeV (CMS)

- Comparing to strange-hadron results, the D⁰ v_2 values are smaller at a given p_T , or at similar transverse kinetic energy per constituent quark, after normalizing v_2 by the number of constituent quarks.
- The collective behavior of charm quarks is weaker than that of the light-flavor quarks. This effect is not seen in heavy-ion (Pb-Pb) collisions.

Open heavy-flavour production

pp collisions:

- Test pQCD calculations
- Study fragmentation and hadronisation, heavy-flavour jet properties
- Set a reference for p-Pb and Pb-Pb

p-Pb collisions

- Study cold nuclear matter (CNM) effects (nPDF, shadowing, gluon saturation, k_T -broadening, energy loss in CNM in the initial and final state)
- Address possible collective effects and effects related to the (possible) formation of a QGP in p-Pb collisions.

Charm hadronization in vacuum

- Do we understand it?

 - O Possible implications of the experimental result

Λ_c production in pp, p-Pb (ALICE)

JHEP 1804 (2018) 108

Λ_c production in pp, p-Pb (ALICE)

LHC run II data

- ☑ Result from HERA, obtained in a similar pt range, sits in the 0.1 region. Challenge for the universalità of the fragmentation functions
- Mew analysis in pp at 5 TeV largely improve the precision (factor 2 in [1,2] GeV/c) and extend the p_T range

ALI-PREL-311156

JHEP 1804 (2018) 108

Λ_c production in pp, p-Pb (ALICE)

LHC run II data

- ☑ Result from HERA, obtained in a similar pt range, sits in the 0.1 region. Challenge for the universalità of the fragmentation functions
- Mew analysis in pp at 5 TeV largely improve the precision (factor 2 in [1,2] GeV/c) and extend the p_T range

ALI-PREL-311152

JHEP 1804 (2018) 108

Λ_c production in p-Pb (LHCb)

JHEP 02 (2019) 102

- Data points agrees with nPDF calculations
- \square Different $p_{\rm T}$ dependence?
 - Need run II data to verify

Eur. Phys. J. C77 (2017) 1, arXiv:1610.05382. Comput. Phys. Commun. 184 (2013) 2562 Comput. Phys. Commun. 198 (2016) 238,

Ξ_c production in pp (ALICE)

 $\mathbf{\underline{C}} = \mathbf{\underline{C}} / \mathbf{D}^0$ largely understimated by models. Similar situation as for $\mathbf{\Lambda}_c$

Summary

- pp measurements as a test of pQCD: we are entering a precision here, constraints to calculations become stringent
- p-Pb measurements to investigate initial state effects. Very good experimental precision ⇒ stringent test for CNM effects
- D meson results evidence possible collectivity in p-Pb collisions.
- $\stackrel{\text{$\mathcal{Q}}}{\sim} \Lambda_c$ results are entering a precision hera. Unexpected behavior of baryon-to-meson ratio
- Fig. LHCb have large samples still to be analyzed. Additional constraints on nPDF, D-D correlations, ...?

Some open question:

- ☐ What is the nature of these collettive-like effects?
- \square Are the Λ_c/D^0 results a challenge for the universality of the FF?

Extra Slides

Centrality in p-Pb collisions (ALICE)

Centrality in p-Pb collisions: Phys. Rev. C 91 (2015) 064905

biases in the determination of <N_{coll}>

- multiplicity fluctuations, jet-veto bias, geometrical bias
- Lose correlations between N_{part}, multiplicity and impact parameter b
- bias depends on estimator used for multiplicity determination

Experimentally:

V0A: <N_{coll}> determined by Glauber fit of V0 amplitude

ZNA: <N_{coll}> obtained with a "Hybrid method"

- slice events in ZN energy (Pb going side)
- <N_{coll}> in ZN energy class obtained by scaling the minimum bias value with the ratio between the average charged-particle multiplicity at mid rapidity in the same class and that measured in the minimum bias sample

$$Q_{\rm pPb} = \frac{({\rm d}N^{\rm D}/{\rm d}p_{\rm T})_{\rm pPb}}{\langle T_{\rm pPb}\rangle \times ({\rm d}\sigma^{\rm D}/{\rm d}p_{\rm T})_{\rm pp}} \qquad \langle T_{\rm pPb}\rangle = \frac{\langle N_{\rm coll} \rangle_i}{\sigma_{\rm NN}}$$

investigate charm production in p-Pb collisions w.r.t. pp collisions: possible multiplicity dependent modification of the p_T spectra in p-Pb?

Fully reconstructed B mesons with CMS

PRL 116 (2016 032301

- Fully reconstructed B (B+, B0, Bs) mesons
- pp reference from FONLL pQCD calculation
- Only high-pT accessible
- R_{pPb} consistent with unity

Open-beauty with ALICE

J. High Energ. Phys. (2017) 2017: 52

☑ Beauty electrons results are compatible with unity within uncertainties
☑ Models describe well the R_{pPb}

D tagged jets R_{pPb}

D mesons prompt fraction

Ds production in pp at 5.02 TeV

D-h correlations

- Average of D⁰, D⁺, D^{*+} results
- D meson: "trigger" particle, correlated with charged tracks: associated particles
- Contribution from the B feed-down subtracted
 - √ Based on FONLL beauty cross section and correlation templates from PYTHIA

D-tagged jets

pp collisions:

- Sensitive probes of pQCD
- Further constraints on the heavy-favour uark production mechanism and fragmentation

p-Pb collisions: cold nuclear matter efects, collectivity?

D-tagged jets in p-Pb

