

Open charm measurements with CBM

M. Deveaux, Goethe University Frankfurt on behalf of the CBM collaboration.

Outline

Physics goals of CBM on open charm (Physics goals of CBM on charmonium => See talk of P.P. Bhaduri)

Status of the detector R&D.

Status of the feasibility studies.

CBM @ FAIR Temperature T [MeV] 200 Quarks and Gluons Critical point? Hadrons SIS 18 SIS 100 GSI Color Super-Neutron stars conductor? CBM Nuclei **Net Baryon Density FAIR** Super-FRS NuSTAR RESR

CBM:

- Explore phase diagram at ragion of highest net-baryon density.
- Use rare probes.

M. Deveaux

The

Baryonic

Compressed

Matter experiment

3

Physics cases of open charm in CBM

Open charm physics at CBM – basic issues

Mission 1:

- Measure and understand the formation of charmed particles near threshold in p-p (=Be) and p + A.
- => Back up charmonium measurements (see talk of P.P. Bhaduri)

Sub-threshold charm production?

J. Steinheimer, A. Botvina and M. Bleicher, Phys. Rev. C 95, no. 1, 014911 (2017)

dea:

- Add heavy resonances to UrQMD.
- Allow decay $N^* \rightarrow (c + \bar{c}) + N$
- Fix free parameters with data:

$$p + p \to J/\psi + X @ \sqrt{S_{pp}} = 6.7 \text{ GeV}$$

TABLE II. Newly introduced baryonic resonances.

Name	Mass [GeV]	Width [GeV]	Spin
N*(2600)	2.600	0.65	11/2
N*(2700)	2.700	0.40	13/2
N*(3100)	3.100	1.30	15/2
N*(3500)	3.500	1.30	17/2
N*(3800)	3.800	1.30	17/2
N*(4600)	4.600	1.30	19/2
$\Delta*(2420)$	2.420	0.40	11/2
$\Delta*(2750)$	2.750	0.40	13/2
$\Delta*(2950)$	2.950	0.50	15/2
$\Delta*(3300)$	3.300	1.00	17/2
$\Delta*(3500)$	3.500	1.00	19/2
$\Delta*(3700)$	3.700	1.00	19/2
$\Delta*(4200)$	4.600	1.00	21/2

Effect:

Accumulate kinetic energy in p-A and A-A collisions, e.g.:

1st collision: $p + N + E_{kin} \rightarrow N^* + X$

(sub $c - \bar{c}$ threshold)

2nd collision: $N^* + N + E'_{kin} \rightarrow (c - \bar{c}) + X$ (above $c - \bar{c}$ threshold)

Approach was previously used for strange particles.

e.g. J. Steinheimer and M. Bleicher, J. Phys. G 43, no. 1, 015104 (2016)

Open: Applicable to charm?

Model predictions:

- Substantial yield of J/Psi and D-mesons
- Yields for SIS100 energy range roughly equal to HSD yields for SIS300.

Model might be confirmed by observing sub threshold charm production with CBM at SIS100.

8

Impact of "Steinheimer model"

Multi-collisions displace birth of J/Psi by ~5fm @ 15 GeV.

Path of J/Psi in nuclear matter

Note:

L in Equation = Average path
Displayed qualitatively in figure.

J/Psi production by double collision modifies path length of J/Psi in nuclear matter.

=> Bias of dissociation X-section measurement.

Open Charm Physics at CBM

Instrumentation: Relevant detectors

How to measure open charm

Reconstructing open charm requires:

- Excellent secondary vertex resolution (~ 50 μm)
- => Excellent spatial resolution (~5 μm)
- => Very low material budget (few 0.1 % X_0)

=> Detectors in vacuum

CBM Micro-Vertex-Detector basic concept

The CBM-MVD aims for:

- ~ 5µm spatial resolution
- 10⁵ Au+Au/s (11 AGeV)
- 10^7 p+Au/s (30 GeV)

M. Deveaux 11

CBM

Fixed target – particuar challenges

Delta - electrons 10 AGeV Au+Au 2.5µs integration time.

Need increased rate capability and rad. tolerance.

Contineous impacts of beam ions. (Here: SPS-Pb beam).

Need extended tolerance to heavy ions.

Why dedicated sensors?

	ALPIDE (demonstrated)	MVD requirements MIMOSIS (design goal)	Factor
Ion. Rad. Tolerance	0.5 Mrad	> 3 Mrad	10
Non. Io. Tolerance	$10^{13} \text{ n}_{eq}/\text{cm}^2$	$> 3x10^{13} n_{eq}/cm^2$	3
Heavy ion tolerance	N/A	1 kHz / cm ²	
Time resolution	<10 µs	5 µs	2
Data rate (internal)	~1 Gbps	20 Gbps (peak)	25
Data rate (external)	1 Gbps	2.5 Gbps	3
Data reduction	Trigger	Elastic buffer	
	Not available in CBM		

CBM approach:

Need next generation sensor — MIMOSIS — starting from ALPIDE.

Partner: PICSEL group of IPHC Strasbourg (MIMOSA/ULTIMATE)

MIMOSIS – Sensor concept

MIMOSIS – Block diagram

Adapt to CBM:

- Internal DAC
- Data paths
- Slow control
- Buffer structure
- I/O

M. Dev

- Rad. tolerance
- SEU tolerance

MIMOSIS-0 – first signs of life

Response to injected pulse Response to ⁵⁵Fe (5.9 keV X-rays)

First results look promising... stay tuned.

Integration concept of the MVD r_{out} Beam hole CBM acceptance Outside acceptance

Outside acceptance

Vacuum operation requires actively cooled device.

- Use cooling support from diamond to move heat out of acceptance
- Put heat sink and FEE outside acceptance

Integration concept of the MVD

LV-regulator

GBTx data concentrator

Current status: PRESTO and NA61/SHINE VD

PRESTO:

Prototype of a quarter station incl. sensors (MIMOSA-26), cables, support etc.

Integration completed. Test:

- Vacuum compatibility
- Temperature cycling

(More than) A spin-off:

Netherlands The NA61/SHINE vertex detector uses (and tests) MVD prototype/PRESTO electronics

Feasibility studies on open charm production

Reconstruction of open charm - Major cuts

Anticipated: Protons are identified and rejected by TOF

Simulation p-C 30 AGeV

Expect peak visible after few days beam on target at 10MHz p-A. ⇒ Open charm in p-A is possible at CBM.

Effect and results

More information on simulations:

- C. Dritsa: "Design of the Micro Vertex Detector of the CBM experiment: Development of a detector response model and feasibility studies of open charm measurements.", Phd Thesis, Frankfurt/Strasbourg 2011
- I. Vasiliev: "Open Charm measurement with the CBM detector at FAIR", HFM2 Kolkata, Feb.4, 2016

Scaled from simulations made for 25 AGeV Au+Au.

=> Significant uncertainties... next generation simulations pending.

However: Hardware improvement since then:

- Speed up of MVD sensors x6 => Eases tracking, less background.
- 4 MVD stations instead of 2 => Eases track matching, less background.
- ...

Note: Measurement for D-mesons compatible with other physics cases. No additional beam time required.

Status of FAIR

Status of FAIR

Physics cases of CBM (charm physics)

Initial idea:

Use SIS300 (15-35 AGeV) to do charm physics close to the threshold.

ssue:

- SIS300 not part of Modularized Start Version of FAIR.
- SIS100 provides max. 11 AGeV in Au+Au => Sub threshold for N + N \rightarrow c $-\overline{c}$

GSI

SIS 18

SIS 100

NuSTAR

FAIR

Detector hardware R&D is on track. Performance might exceed initial R&D goals.

Current process: Re-focus physics program to SIS100 Ideas:

- Do charm in p + A collision systems (30 GeV) and more.
- Study possible sub-threshold charm production in A+A

Work in progress => Help and ideas are welcome.

The team

The PICSEL group of IPHC Strasbourg

Backup

MIMOSIS – 0 – first results

First results look promising.

MIMOSIS may to exceed CBM target on time resolution