

Anisotropic flow correlations of heavy-flavours in heavy-ion collisions

A. Dubla 25/02/2019

Physics motivation

- Charm and beauty quarks are produced in hard scattering processes in the early stage of the collision
- Experience the full evolution of the system → sensitive probes of the properties of the hot and dense QCD matter (QGP)
- Lose energy while traversing the medium
- Do heavy quarks participate in the collective expansion of the medium?

- Investigation of the magnetic filed created in heavy-ion collisions
- Cold Nuclear Matter effects and hadronization

Physics motivation

- Charm and beauty quarks are produced in hard scattering processes in the early stage of the collision
- Experience the full evolution of the system → sensitive probes of the properties of the hot and dense QCD matter (QGP)
- Lose energy while traversing the medium
- Do heavy quarks participate in the collective expansion of the medium?
 - Investigation of the magnetic filed created in heavy-ion collisions
- Cold Nuclear Matter effects and hadronization

Collectivity: azimuthal anisotropy

- Re-scatterings among produced particles convert the initial geometrical anisotropy into an observable momentum anisotropy
- In addition, path-length dependent energy loss induces an asymmetry in momentum space
- Observable: elliptic flow $v_2 = 2^{nd}$ Fourier coefficient of the particle azimuthal distribution

$$E\frac{\mathrm{d}^3 N}{\mathrm{d}^3 p} = \frac{1}{2\pi} \frac{\mathrm{d}^2 N}{p_{\mathrm{T}} \mathrm{d} p_{\mathrm{T}} \mathrm{d} y} \left(1 + \sum_{n=1}^{\infty} 2v_n \cos[n(\varphi - \Psi_{\mathrm{RP}})] \right)$$

Heavy-flavour v_2 measurements probe:

Low/intermediate p_T: collective motion,
 degree of thermalization of heavy quarks and hadronization mechanism (recombination)

High p_T: path-length dependence of heavy-quark energy loss

Elliptic flow

– positive D meson v_2 for $2 < p_T < 8$ GeV/c in mid-central Pb-Pb collisions

Elliptic flow

- positive D meson v_2 for $2 < p_T < 8$ GeV/c in mid-central Pb-Pb collisions
- $-v_2(D) \sim v_2(\pi)$ for $p_T > 4$ GeV/c in mid-central Pb-Pb collisions
- Hit of $v_2(D) < v_2(\pi)$ for $p_T < 4$ GeV/c in mid-central Pb-Pb collisions

Elliptic flow: model comparison

– Improved precision of the measurement can constrain model parameters, e.g. the heavy-flavour spatial diffusion coefficient D_s

$$D_s = (T/m_{\rm Q})\tau_{\rm Q}$$

For models describing the data with $X^2/ndf < 1$:

$$1.5 < 2\pi T_{\rm c}D_s < 7$$

$$\tau_{\rm charm} = 3 - 14 \text{ fm/}c$$

Triangular flow at LHC

First observations of $v_3 > 0$ for charm at LHC!

- v_3 for charged particle larger that D⁰ v_3 although not fully significative

Azimuthal anisotropy at RHIC

- Significant $v_2(D) > 0$ at RHIC Mass "ordering" and m_T - m_0 ordering suggest an hydro-dynamic behaviour! Indication that charm is flowing with the medium!
- At RHIC v₃ consistent with charged particle one (although with very large uncertainties)

Event Shape Engineering

Technique that allows us to study various observables in classes of events corresponding to the same centrality, but different eccentricity

 Technique relies on the classification of events at a certain centrality according to the magnitude of the second-harmonic flow vector

D-meson V₂ for different q₂ samples:
 investigate correlation between flow coefficients of D mesons and soft hadrons

Azimuthal anisotropy: Event Shape Engineering

Measurement of D-meson v2
 in ESE-selected samples
 indicate a positive correlation
 between the D-meson v2 and
 the light-hadron v2
 Similar effect in the 10-30%
 and 30-50% centrality classes
 within uncertainties

Azimuthal anisotropy: Event Shape Engineering

Measurement of D-meson v2
 in ESE-selected samples
 indicate a positive correlation
 between the D-meson v2 and
 the light-hadron v2
 Similar effect in the 10-30%
 and 30-50% centrality classes
 within uncertainties

 v_2 (large-q₂) > v_2 (unbiased) of about 40%

Azimuthal anisotropy: Event Shape Engineering

Measurement of D-meson v2
 in ESE-selected samples
 indicate a positive correlation
 between the D-meson v2 and
 the light-hadron v2
 Similar effect in the 10-30%
 and 30-50% centrality classes
 within uncertainties

 v_2 (large-q₂) > v_2 (unbiased) of about 40%

 v_2 (small-q₂) < v_2 (unbiased) of about 25%

Introduction

In non-central heavy-ion collisions an enormous magnetic field (~10¹⁸ G) is generated by the movement of the spectator protons
 (Biot-Savart law)

– quickly decreases (\sim 1 fm/c) as the spectators fly away

Motivation

 magnetic field in non-central heavy-ion collision is expected to lead to several novel phenomena, e.g. Chiral Magnetic Effect (CME)

– we face different problems:

- → hard to decouple signal (charge separation across reaction plane) from background (local charge conservation + flow)
 - \rightarrow very few constraints from theory

proposal: measure a simple and clean observable connected to the magnetic field, use it to calibrate its strength and lifetime

- varying magnetic field will influence moving charges
- very few assumptions needed: charged and conductive QGP
- the result: charge-dependent **directed flow**, asymmetric in rapidity

- varying magnetic field will influence moving charges
- very few assumptions needed: charged and conductive QGP
- the result: charge-dependent **directed flow**, asymmetric in rapidity

- where does it come from?
- → electric field induced by decreasing B (Faraday effect)

- varying magnetic field will influence moving charges
- very few assumptions needed: charged and conductive QGP
- the result: charge-dependent **directed flow**, asymmetric in rapidity

- where does it come from?
- → electric field induced by decreasing B (Faraday effect)
- → Lorentz force on moving charges (Hall effect)

competing effects!

- varying magnetic field will influence moving charges
- very few assumptions needed: charged and conductive QGP
- the result: charge-dependent directed flow, asymmetric in rapidity

- where does it come from?
- → electric field induced by decreasing B (Faraday effect)
- → Lorentz force on moving charges (Hall effect)

competing effects!

*first proposed by Gursoy, Kharzeev and Rajagopal in '14

charge-dependence v_1

Challenging measurement: very small signal is expected from theory predictions

the rapidity slope varies with p_T (different contribution of Faraday and Hall effects)

Charge-dependence v₁odd

- \rightarrow hint of a charge difference: Δv_1 odd = v_1 odd(+) v_1 odd(-) \neq 0 (2.6 σ significance)
- → 1-2 orders of magnitude bigger: long-lived magnetic field? early thermalization?
- → **opposite sign**:dominance of Hall effect?

Why open heavy-flavour?

- formation time ~ 0.1 fm/c → comparable to the time scale when B is maximum no thermal formation
 - the kinetic relaxation time of charm is similar to the QGP lifetime

https://doi.org/10.1016/j.physletb.2017.02.046

Why open heavy-flavour?

- formation time ~ 0.1 fm/c → comparable to the time scale when B is maximum
 no thermal formation
 - the kinetic relaxation time of charm is similar to the QGP lifetime
 - \rightarrow resultant effects entail a **significantly large directed flow** v_1 of charm quarks compared to light quarks

https://doi.org/10.1016/j.physletb.2017.02.046

Analysis strategy

- SP in which the Q vector is reconstructed from the spectator (ZDC)

$$v_1\{\Psi_{A,C}\} = \frac{\langle \vec{q} \cdot \vec{Q}_{A,C} \rangle}{\sqrt{|\langle \vec{Q}_A \cdot \vec{Q}_C \rangle|}} = \frac{\langle q_x Q_{A,Cx} + q_y Q_{A,Cy} \rangle}{\sqrt{|\langle Q_{Ax} Q_{Cx} + Q_{Ay} Q_{Cy} \rangle|}},$$

Analysis performed as a function of the invariant mass

Assumption:

$$v_1(M) = \frac{S(M)}{S(M) + B(M)} * v_1^S + \frac{B(M)}{S(M) + B(M)} * v_B^1(M).$$

$$v_1^{bg}(M_{INV}) = p_0 + p_1 \times M_{INV}$$

All the ingredients to evaluate v_1 are extracted from a simultaneous fit of the M_{inv} spectra and $v_1(M_{inv})$

Computed rapidity-odd component for D^0 and \overline{D}^0 separately: \overline{D}^0 separately: \overline{D}^0 separately:

$$v_1^{\text{odd}} = \frac{1}{2}(v_1\{\Psi_A\} - v_1\{\Psi_C\}).$$

Signal extraction

V_1^{odd} for D^0 vs \overline{D}^0

Despite the large uncertainties \rightarrow hint of an opposite trend for D^0 and \overline{D}^0 meson

- **Signal** (central value) is **factor 10 higher** then prediction → *long-lived magnetic field?* → *early thermalisation?*
- **Opposite trend** of D^0 and \overline{D}^0 w.r.t prediction \rightarrow dominance of Hall effect?

→ indications already observed for charged particles

Δv₁ to quantify a possible signal

$$\Delta v_1^{\text{odd}}(\boldsymbol{\eta}) = k \times \boldsymbol{\eta}$$

rapidity dependence of the charge difference Δv_1 is fitted using a linear function with slope k

$$k = 0.52 +/- 0.18 \text{ (stat)} +/- 0.05 \text{ (syst)}$$

Not yet high significance of the measurements (2.7σ)

Δv_1 to quantify a possible signal

The 3 orders of magnitude difference between charged-particle and heavy-flavour predicted by theory are experimentally accessible

Charged dependent v₁ at STAR

- First observation of non-zero $D^0 v_1$ model predicts correct sign but wrong magnitude
 - No firm conclusion yet on possible magnetic field induced splitting Δv₁
 - Very promising sensitivity to the effect of the early time magnetic field in heavy-ion collisions, can help constrain QGP properties

News from theory...

- → charge-dependent flow induced by magnetic and electric fields in heavy- ion collisions.
- → Simulate the evolution of the expanding QGP hydro-dynamically, using the iEBE-VISHNU framework, and add the magnetic and electric fields as well as the electric currents

News from theory...

 New theory development shows an increase of 2 order of magnitude in the charged dependence directed flow

What about Run3 and Run4?

Charge-dependence v_1

- Run3/4 projections

$$v_1^{\text{odd}} = \frac{1}{2}(v_1\{\Psi_A\} - v_1\{\Psi_C\}).$$

Simulations are done according to the values predicted by theory for both observables

Conclusion

- → A non-zero elliptic/triangular flow of heavy flavours was measured in mid-central collisions
- \rightarrow Hint for an increase of heavy-flavour v_2 from central to semi-central collisions
 - Low p_{T} D-meson elliptic and triangular flow smaller than for charged-particles
- \rightarrow Suggests collective motion of low- p_{T} charm meson

- → Indication of a charge-dependent directed flow v₁ of open heavy-flavour
 - Hint of much larger signal for HF than for charged-particles is measured

25

A. Dubla GS

BACKUP

Spectator plane reconstruction and analysis strategy

Zero-Degree Calorimeters (ZDC), energy of spectator neutrons - located at beam rapidity: $|\eta| > 8.8$

spectator plane from the signal (E_i) into the 4 ZDC segments:

$$\overrightarrow{Q}_{A,C} = \frac{\sum_{j=1}^{4} \overrightarrow{p}_{j} E_{(A,C)j}^{\alpha}}{\sum_{j=1}^{4} E_{(A,C)j}^{\alpha}}$$

$$v_1\{\Psi_{A,C}\} = \frac{\langle \vec{q} \cdot \vec{Q}_{A,C} \rangle}{\sqrt{|\langle \vec{Q}_A \cdot \vec{Q}_C \rangle|}} = \frac{\langle q_x Q_{A,Cx} + q_y Q_{A,Cy} \rangle}{\sqrt{|\langle Q_{Ax} Q_{Cx} + Q_{Ay} Q_{Cy} \rangle|}},$$

Comparison with STAR

Our results....

- \rightarrow from theory we expect:
- $v_1^{\text{avg}} = 0, \ v_1^{\text{diff}} \neq 0;$
- \rightarrow indication of an opposite behavior for \mathbb{D}^0 and $\overline{\mathbb{D}^0}$
 - already observed in the LF sector

Comparison with STAR

STAR results

- \rightarrow from theory we expect:
- $v_1^{\text{avg}} \neq 0$, $v_1^{\text{diff}} \neq 0$
- → The Tilting seems important at RHIC energies

Comparison with STAR

Our results....

- \rightarrow from theory we expect:
- $v_1^{\text{avg}} = 0, \ v_1^{\text{diff}} \neq 0;$
- \rightarrow indication of an opposite behavior for \mathbb{D}^0 and $\overline{\mathbb{D}^0}$
 - already observed in the LF sector

Azimuthal anisotropy

Δv1 to quantify a possible signal

rapidity dependence of the charge difference $\Delta v1$ is fitted using a linear function with slope k

k = 0.09 + -0.16 (stat) + 0.05 (syst)

v₁^{odd} energy dependence

 v_1^{odd} : compressibility —> initial tilt / rotation of the system

$$v_1^{\text{odd}} = \frac{1}{2}(v_1\{\Psi_A\} - v_1\{\Psi_C\}).$$

- \rightarrow d v_1^{odd} /d η decreases by a factor ~1.3 between 2.76 and 5.02 TeV
- → qualitatively consistent with energy dependence observed from RHIC to LHC
- decreased tilting/rotation of initial system
- → different centrality ranges: no significant centrality dependence observed

Projections for Run3/4

Numbers for the D0 were taken from the ITS upgrade

https://aliceinfo.cern.ch/ArtSubmission/sites/aliceinfo.cern.ch.ArtSubmission/files/draft/musa/2012-Mar-13-paper_draft-2012_Mar_6_AliceITSupgrade-CDR-vs2.3.pdf

2.3 D0 produced in |y|<0.5 per MB event reconstruction efficiency 0.05 (at <p_T>)

BR = 3.8%

→ 0.00437 D0 / MB event

Part.	Yield	$\frac{dN}{dy} _{y=0}$	cτ [μm]	decay channel	B.R.	Acc.
	m.b., 0-10%	m.b., 0-10%		111 120 00 120 120 120 120 120 120 120 1	1011204-007	
D^0	23, 110	2.3, 11	≈ 120	$K^-\pi^+$	3.8%	1
Λ_c	2.9, 14	0.29, 1.4	≈ 60	$pK^-\pi^+$	5.0%	1
В	1.3, 6.2	0.2, 0.9	≈ 500	$J/\psi(\rightarrow e^+e^-)$	$1.2\% \times 6\%$	1
		May 2007 7 101		$D^0(o K^-\pi^+)$	$60\% \times 3.8\%$	1
				e^+	10.9%	1.8
B^+	0.6, 2.7	0.1, 0.4	≈ 500	$J/\psi(\rightarrow ee)K^+$	$0.1\% \times 6\%$	1
B_s^0	0.2, 0.9	0.03, 0.13	≈ 500	$J/\psi(\rightarrow ee)\phi(\rightarrow KK)$	0.14% · 6% · 50%	1
Λ_b	0.1, 0.5	0.015, 0.07	≈ 400	$\Lambda_c(\to pK^-\pi^+) + e^-$	$9.9\% \times 5\%$	1
				$\Lambda_c(\to pK^-\pi^+) + h^-$	90%(guess)×5%	1

Now we have ~100M MB events. For run3 \rightarrow 1000x the events now available \rightarrow 2.6e08 D0s in total