

Azimuthal correlations of D mesons with charged particles in pp and p-Pb collisions at $\sqrt{s_{ m NN}}$ = 5.02 TeV with ALICE at the LHC

Shyam Kumar for the ALICE Collaboration

email: shyam.kumar@cern.ch

3rd Heavy flavour meet-2019 IIT Indore, India

Outline

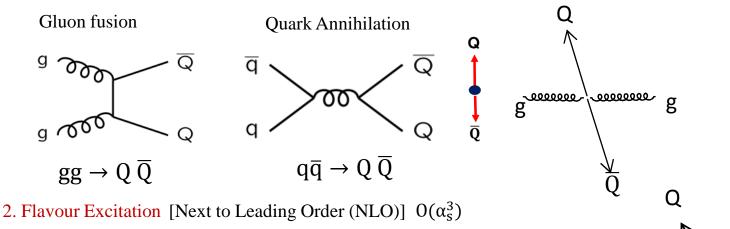
- Physics Motivations
- ➤ ALICE Detector
- Analysis Strategy
- ➤ Main Observables
- ➤ Results
- ➤ Summary

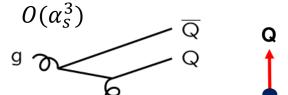
Physics Motivations

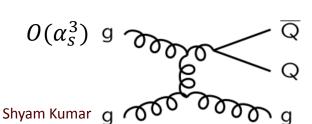
- Heavy quarks (charm and beauty) are produced through hard parton scatterings in the initial stage of the collisions
 - Production time scale $\Delta t \sim 1/2 m_{c,b}$
 - ightharpoonup Charm: $\sim 0.07 \text{ fm/}c$
 - ightharpoonup Beauty: $\sim 0.02 \text{ fm/}c$
 - QGP formation time
 - t_0 : 0.1 1.0 fm/c
- Heavy quarks are witness of the whole evolution of the medium produced in ultra-relativistic heavy-ion collisions
- Ideal probe to study the medium properties
- Two types of heavy-flavour particles
- Open heavy flavour: particles with non-zero net charm or beauty quantum number e.g. D and B mesons
- ➤ Hidden (closed) heavy flavour: bound states of Q Q pairs i.e. J/psi, Upsilon

Ref: Cristina Bedda, Measurement of D-meson production in p-Pb and Pb-Pb collisions with the ALICE detector at the LHC, ICNF 2017.

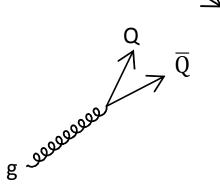
- ightharpoonup Initial-state effects [in p-A collisions at Low p_T]:
- \blacktriangleright Anti-shadowing, Shadowing, k_{T} broadening (Cronin effect), and Color-Glass-Condensate (CGC)
- **❖** Final-state Effects (due to medium) [in AA collision at High p_T]:
- > Energy loss by gluon radiation, in-medium hadronization (Recombination vs Fragmentation)


Ref: Panagiota Foka, Małgorzata Anna Janik. https://doi.org/10.1016/j.revip.2016.11.001.

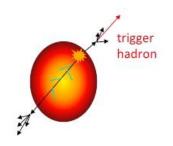

Physics Motivation


Heavy-flavour production mechanisms

- 1. Pair Production [Leading Order (LO)] $O(\alpha_s^2)$
- 1. Q and \overline{Q} symmetric in p_T back to back
- 2. Nearly equal near-and away-side peaks



- 1. Q and \overline{Q} asymmetric in p_T with broad opening angle
- 2. Away side peak broadening
- 3. Gluon Splitting [Next to Leading Order (NLO)] $O(\alpha_s^3)$


- 1. Q and \overline{Q} asymmetric in p_T with small opening angle
- 2. Increasing near side peak

3rd Heavy flavour meet-2019, IIT Indore, India

~000000000

g

$$\begin{split} \Delta \eta &= \eta_{trig} - \eta_{assoc} \\ \Delta \phi &= \phi_{trig} - \phi_{assoc} \end{split}$$

 $\mathsf{High}\text{-}p_\mathsf{T} \mathsf{D} \mathsf{meson} \Rightarrow \mathsf{Trigger} \mathsf{Hadron}$

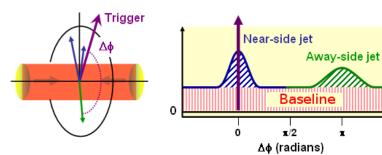
D-hadron correlations:

pp collisions:

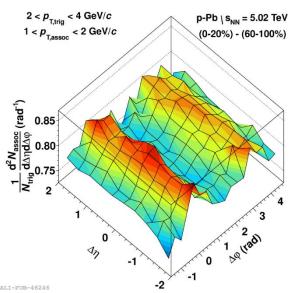
- Characterization of fragmentation of charm quarks into jets
- Test and constrain perturbative QCD inspired models
- Reference for p-Pb and Pb-Pb collisions

• p-Pb collisions:

- Cold Nuclear Matter (CNM) effects, Initial State effects
- Double-ridge structure in centrality dependent analysis
- Disentangle final-state QGP-induced modifications from CNM effects

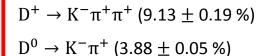

❖ Pb-Pb collisions:

- > Study of in-medium partonic energy loss and it's path-length dependence
- > Interaction of heavy quarks with the medium


> Characterization of medium-induced modification of charm-quark fragmentation and hadronization

Overall correlation distribution Near Side (NS) and Away Side (AS) peaks

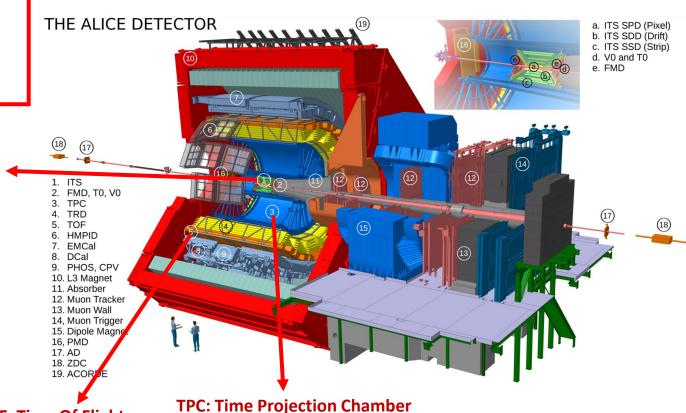
Ref: STAR collaboration. Jets in nuclear collisions, the STAR experiment at RHIC, BNL, 2006


Ref: Phys.Lett.B 719 (2013) 29-41

Ref: Dokshitzer & Kharzeev, PLB 519 (2001) 199

Branching Ratios

ALICE Detector


ITS: Inner Tracking System

$$D^{*+} \rightarrow D^0 \pi^+$$
 (67.7 ± 0.50 %)

 $D^+ \rightarrow K^- \pi^+ \pi^+$

Parameter $d_0^{\pi^4}$

Primary Verte

ITS: Tracking and reconstruction of primary, secondary vertices

TPC: Tracking and particle identification up to 0.6 GeV/c for π/K

TOF: Time Of Flight

TOF: Particle identification up to 2.2 GeV/c for π/K

Ref: J.Phys.G39(2000)123001

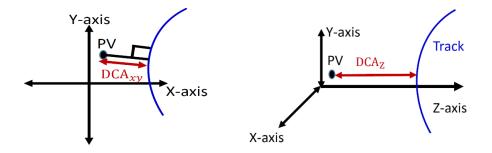
Data Sample:

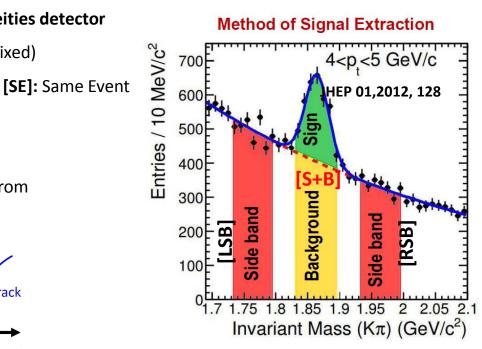
ightharpoonup p-Pb 2016 data with $\sqrt{s_{\rm NN}}$ = 5.02 TeV

Events: 625M

ightharpoonup pp 2017 data with \sqrt{s} = 5.02 TeV,

Events: 985 M


Analysis Strategy


- ❖ D⁺, D⁰ and D^{*} signal extraction from invariant mass plots
- Correlation of D mesons with primary charged particles (e, μ , π , K and p) with removing D-meson daughters
 - ➤ Correlation of D meson = correlation in [S+B] region (correlation in [LSB+RSB] region)*SF
- Mixed Event [ME] correction: for limited and inhomogeneities detector acceptance (events with same z-vtx and multiplicity are mixed)

$$\frac{\mathrm{d}^{2}N^{\mathrm{MECorr}}(\Delta\varphi,\Delta\eta)}{\mathrm{d}\varphi\,\,\mathrm{d}\eta} = \frac{\frac{\mathrm{d}^{2}N^{\mathrm{SE}}(\Delta\varphi,\Delta\eta)}{\mathrm{d}\varphi\,\,\mathrm{d}\eta}}{\frac{\mathrm{d}^{2}N^{\mathrm{ME}}(\Delta\varphi,\Delta\eta)}{\mathrm{d}\varphi\,\,\mathrm{d}\eta}} \frac{\mathrm{d}^{2}N^{\mathrm{ME}}(0,0)}{\mathrm{d}\varphi\,\,\mathrm{d}\eta}$$

Correction for the contamination of secondary particles from strangeness decays and conversion inside detector

- Correction for D-meson efficiency and associated track efficiency
- Correction for feed-down of D mesons from B-hadron decays

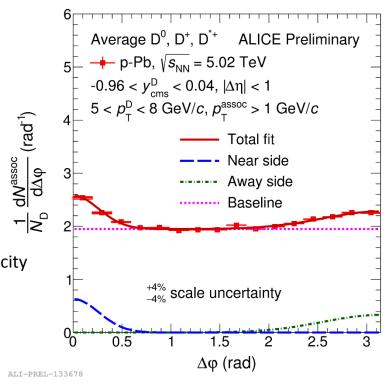
Background

Analysis Strategy

- Projection onto $\Delta \phi$ axis and weighted average of the three D-meson species
- Fitting of correlations distributions NS-peak and AS-peak and extraction of main observables
- NS yield, NS sigma, AS yield and AS sigma

Correlation of Trigger D meson with primary charged particles

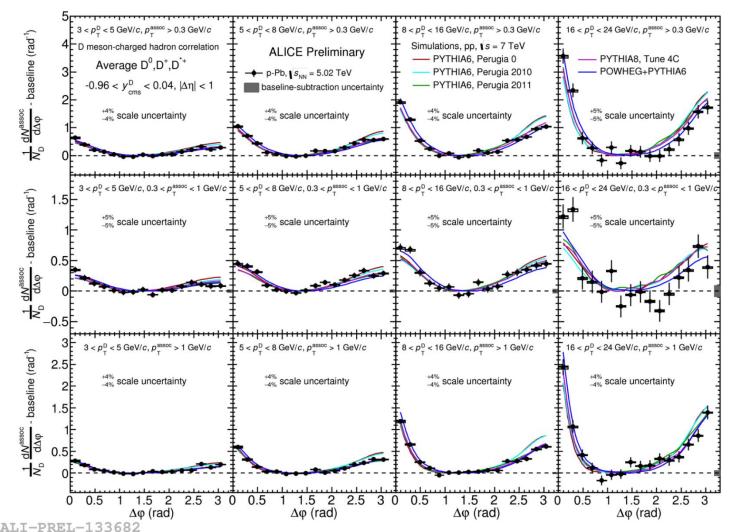
	Associated track $p_{ m T}$ ranges [GeV/ c]
Trigger p_{T} ranges [GeV/ c]	0.3-99.0
3-5	1.0-99.0
5-8	0.3-1.0
8-16	1.0-2.0
16-24	2.0-3.0
	3.0-99.0


Main Observables

Fitting of correlation distribution

$$f(\Delta \varphi) = c + \frac{Y_{NS}}{\sqrt{2\pi} \sigma_{NS}} e^{-\frac{(\Delta \varphi - \mu_{NS})^2}{2 \sigma_{NS}^2}} + \frac{Y_{AS}}{\sqrt{2\pi} \sigma_{AS}} e^{-\frac{(\Delta \varphi - \mu_{AS})^2}{2 \sigma_{AS}^2}}$$

- c: baseline for the underlying tracks => estimator of the event multiplicity
- \triangleright NS yield (Y_{NS}) : number of tracks per D-meson in NS jet
- \triangleright AS yield (Y_{AS}) : number of tracks per D-meson in AS jet
- \triangleright NS sigma (σ_{NS}): angular distribution of tracks in NS jet
- \triangleright AS sigma (σ_{AS}): angular distribution of tracks in AS jet



D-hadron correlation describes the feature of NS and AS jet created from the fragmentation of charm quarks

Results

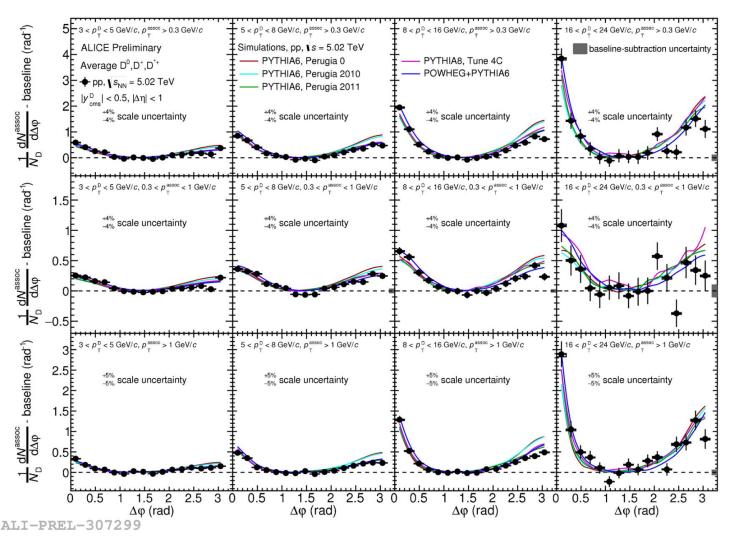
- **Comparison of correlation distributions in data and predictions:**
 - Good agreement between data and expectations from PYTHIA and POWHEG

p-Pb data $\sqrt{s_{NN}}$ = 5.02 TeV

D-meson $p_{\rm T}$ ranges:

3-5, 5-8, 8-16, and 16-24

GeV/c


Associated track p_{T} ranges:

> 0.3, > 1.0 and 0.3-1.0 GeV/c

Good agreement between data and expectations from PYTHIA and POWHEG

pp data \sqrt{s} = 5.02 TeV

D-meson $p_{\rm T}$ ranges:

3-5, 5-8, 8-16, and 16-24

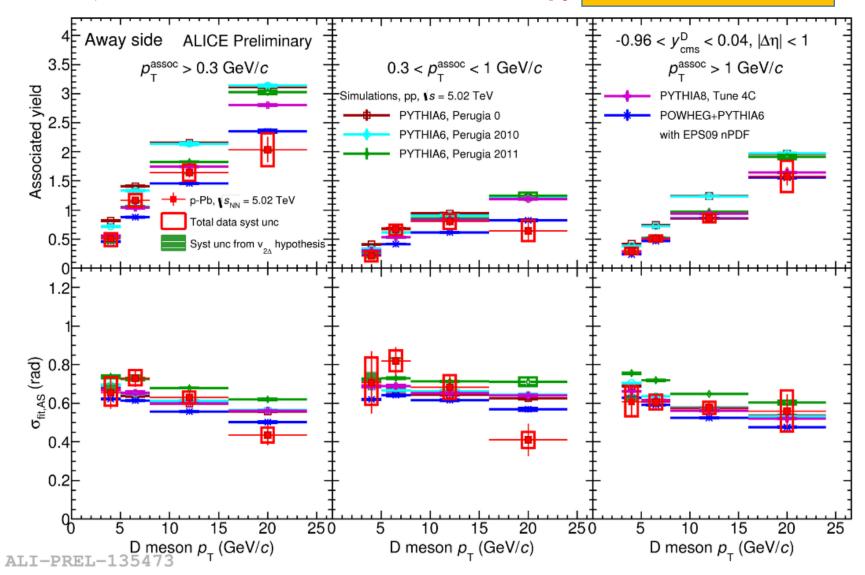
GeV/c

Associated track p_T ranges:

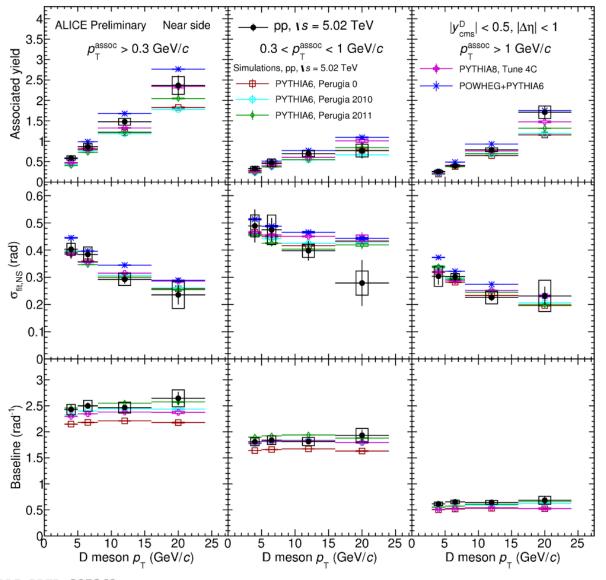
> 0.3, > 1.0 and 0.3-1.0 GeV/c

p-Pb data $\sqrt{s_{NN}}$ = 5.02 TeV

Near Side p_T : > 0.3, > 1.0 and 0.3-1.0 GeV/c

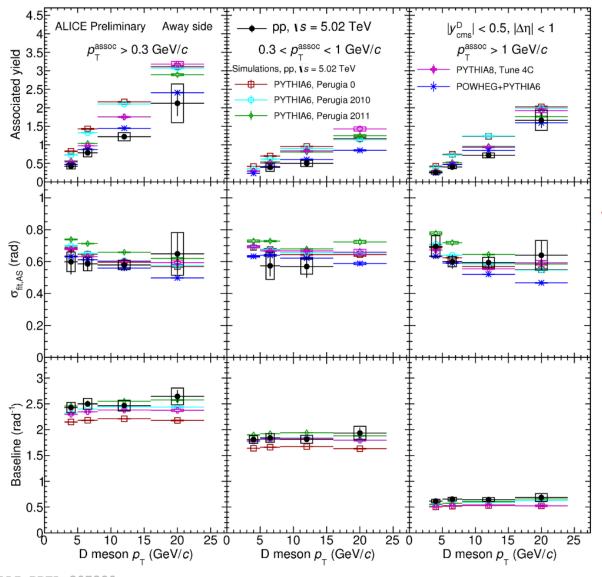


Good agreement between data and expectations from PYTHIA and POWHEG



Away Side p_T : > 0.3, > 1.0 and 0.3-1.0 GeV/c

Good agreement between data and expectations from PYTHIA and POWHEG



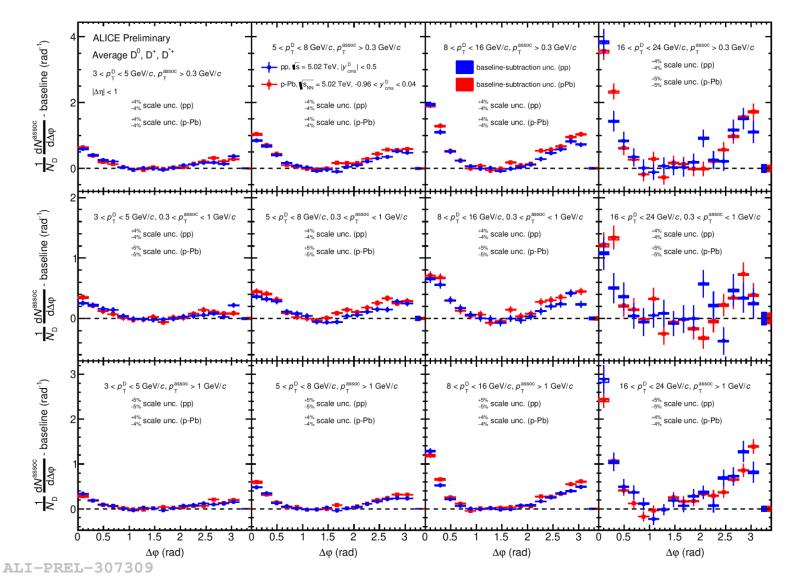
Near Side p_T : > 0.3, > 1.0 and 0.3-1.0 GeV/c

ALI-PREL-307362

Comparison of AS yields, sigmas, and baselines with MC simulations

Away Side p_{T} : > 0.3, > 1.0 and 0.3-1.0 GeV/c

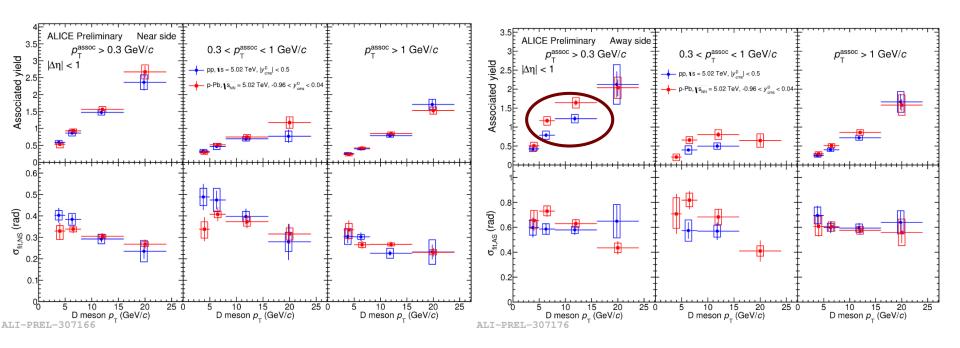
ALI-PREL-307380


Good agreement between data and expectations from PYTHIA and POWHEG

Comparison between pp and p-Pb data correlation

D-meson $p_{\rm T}$ ranges: 3-5, 5-8, 8-16, and 16-24 GeV/c

Associated track p_T ranges: > 0.3, > 1.0 and 0.3-1.0 GeV/c


Correlation distributions show a good agreement for the NS while for the AS there is an enhancement for p-Pb data

Comparison of NS, AS yield and sigma for pp and p-Pb data

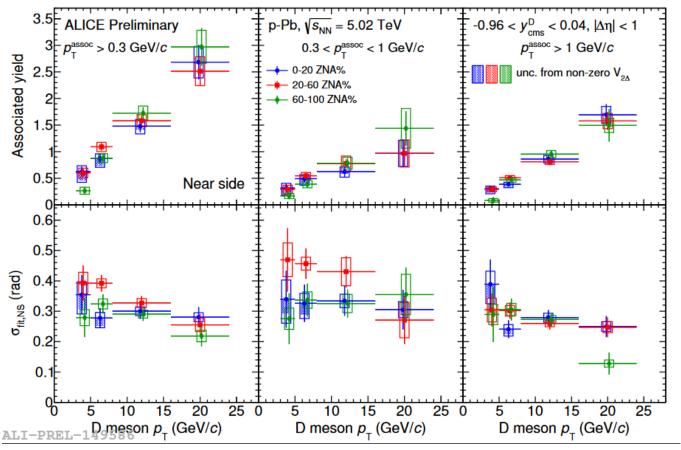
Near Side p_T : > 0.3, > 1.0 and 0.3-1.0 GeV/c

Away Side p_T : > 0.3, > 1.0 and 0.3-1.0 GeV/c

Hints for cold nuclear matter effects \Rightarrow Enhancement of yield in AS for p-Pb data at intermediate p_T

Centrality-dependent Analysis in p-Pb data

Centrality estimator: ZNA (Zero degree neutron calorimeter Anticlockwise)


0-20% centrality ⇒ High Multiplicity (HM) ⇒ Jet contributions+ Medium effects

60-100% centrality ⇒ Low Multiplicity (LM) ⇒ Jet contributions

HM – LM \Rightarrow Medium effects \Rightarrow signature: a nonzero v_2 coefficient (elliptic flow)

Near Side p_T : > 0.3, > 1.0 and 0.3-1.0 GeV/c

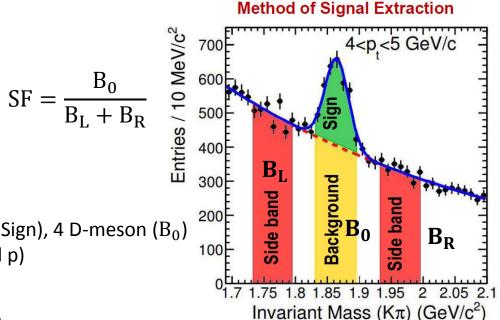
Limited statistics: v_2 coefficient cannot be extracted

The results are compatible within uncertainties

Summary

- ➤ NS and AS yields and sigmas are compared with model predictions
- Charm jets are well described by PYTHIA and POWHEG within uncertainties
- > pp and p-Pb data results are compared and present some hints for cold nuclear matter effects
- ightharpoonup Centrality differential analysis also completed but due to statistics limitations the v_2 coefficient cannot

be extracted


> Results obtained in different centrality classes are compatible within uncertainties

Thank You!!!

Why Sideband subtraction working?

Let assume Sign= S & Background = B_0

$$Sign = S = (S + B_0) - (B_L + B_R) * SF$$

 $SF = \frac{B_0}{B_1 + B_2}$

For correlation:

Let's assume that in an event, there are 2 D-meson (Sign), 4 D-meson (B_0) and also there are primary particles (e, mu, pi, K and p)

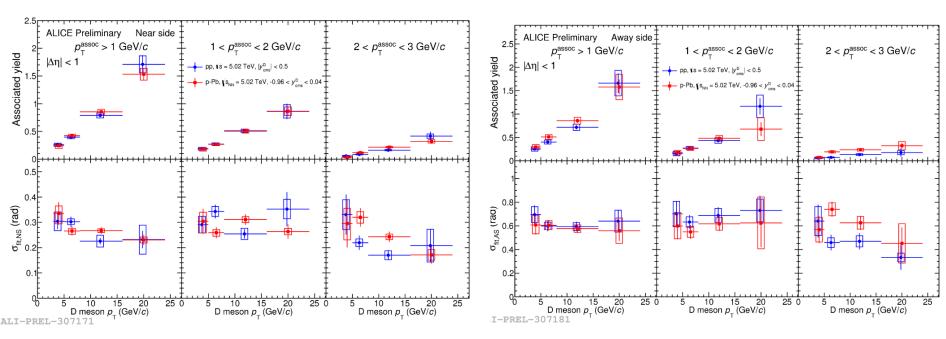
Assuming no detector effects

Signal correlation =
$$2 \times 1000 = 2000 = \left(\frac{dN}{d\phi}\right)_{Sign=S}$$

$$\left(\frac{dN}{d\phi}\right)_{S+R} = (4+2) \times 1000 = 6000$$

$$\left(\frac{\mathrm{dN}}{\mathrm{d}\phi}\right)_{\mathrm{Br}} = \mathrm{B_L} \times 1000 \ \mathrm{and} \quad \left(\frac{\mathrm{dN}}{\mathrm{d}\phi}\right)_{\mathrm{Br}} = \mathrm{B_R} \times 1000$$

$$\left(\frac{dN}{d\phi} \right)_{S+B_0} - SF * \left[\left(\frac{dN}{d\phi} \right)_{B_L} + \left(\frac{dN}{d\phi} \right)_{B_R} \right] = 6000 - \frac{4}{(B_L + B_R)} * (B_L + B_R) * 1000 = 2000 = \left(\frac{dN}{d\phi} \right)_{Sign}$$


Background subtraction under the peak B_0 using the side band subtraction method will not change the result

Comparison of NS, AS yield and sigma for pp and p-Pb data

Away Side p_T : > 1.0, 1.0-2.0 and 2.0-3.0 GeV/c

Hints for the cold nuclear matter effect \Rightarrow Enhancement of yield in AS for p-Pb data at intermediate $p_{\rm T}$