J/ ψ production as a function of charged-particle multiplicity in pp collisions at $\forall s = 13$ TeV with ALICE at the LHC

Dhananjaya Thakur (For the ALICE Collaboration) Indian Institute of Technology Indore, India

3rd Heavy Flavor Meet

18th -20th March, 2019, IIT Indore, India

Good observable related to the underlying event accompanying heavy-flavor production in pp collisions.

- Good observable related to the underlying event accompanying heavy-flavor production in pp collisions.
 - Connection to Multiple Parton Interactions (MPIs)

- Good observable related to the underlying event accompanying heavy-flavor production in pp collisions.
 - Connection to Multiple Parton Interactions (MPIs)
 - Connection to final-state effects (color reconnection etc.)

- Good observable related to the underlying event accompanying heavy-flavor production in pp collisions.
 - Connection to Multiple Parton Interactions (MPIs)
 - Connection to final-state effects (color reconnection etc.)
- Helps to understand the strong hadronic activity associated with heavy-flavor production. e.g g->ccbar, qqbar ->ccbar etc.

- Good observable related to the underlying event accompanying heavy-flavor production in pp collisions.
 - Connection to Multiple Parton Interactions (MPIs)
 - Connection to final-state effects (color reconnection etc.)
- Helps to understand the strong hadronic activity associated with heavy-flavor production.
 e.g g->ccbar, qqbar ->ccbar etc.
- In particular, these measurements help in understanding the interplay between the soft and hard mechanisms.

$J/\psi(D)$ meson vs. multiplicity in pp collisions

JHEP09(2015)148 (ALICE Collaboration)

- - *Mid rapidity J/ψ(D) yield ($|\eta|$ <0.9) vs. mid rapidity charged particles ($|\eta|$ <1.0)

Observation:

- ➤A stronger than linear increase towards higher multiplicity
- ***** Forward rapidity (2.5 < y < 4.0) J/ ψ yield vs. mid rapidity charged particles ($|\eta|$ < 1.0)

Observation:

> Nearly linear increase

- The increase of J/ψ and D meson yield with multiplicity reveals that MPIs are relevant for J/ψ and D meson production.
- **The higher multiplicity reach for pp collisions at \sqrt{s} = 13 TeV might help to provide further insight.**

The ALICE Detector

Charged-particle measurements

Charged-particle multiplicity is measured using the number of SPD tracklets in IηI<1. Acceptance and efficiency effects for the SPD have been corrected using a data-driven method.</p>

Charged-particle measurements

Charged-particle multiplicity is measured using the number of SPD tracklets in IηI<1. Acceptance and efficiency effects for the SPD have been corrected using a data-driven method.</p>

♦ The conversion function from corrected-*N*_{trk} to d*N*_{ch}/d*η*, " *f* ", is estimated using Monte-Carlo simulations.

Charged-particle measurements

Charged-particle multiplicity is measured using the number of SPD tracklets in IηI<1. Acceptance and efficiency effects for the SPD have been corrected using a data-driven method.</p>

❖ The conversion function from corrected- N_{trk} to $dN_{ch}/d\eta$, " f", is estimated using Monte-Carlo simulations.

$$rac{<\!dN_{
m ch}/d\eta>_i}{<\!dN_{
m ch}/d\eta>} = rac{f(<\!\!N_{
m trk}^{
m corr}\!\!>_i)}{<\!dN_{
m ch}/d\eta>_{
m INEL}>0}$$

Signal Extraction

Dimuon, pp at \sqrt{s} =13 TeV

Fitting procedure based on

Signal:

Extended Crystal Ball function

Background:

variable-width Gaussian function

Dielectron, pp at $\sqrt{s} = 13 \text{ TeV}$

- Signal:
 - bin by bin counting in 2.92 3.16 GeV/ c^2
- **Background:**
 - Subtracted using normalized
 - like-sign pair distribution

J/ψ vs. multiplicity in pp at \sqrt{s} = 13 TeV

❖ Highest ever multiplicity reached by ALICE in pp collisions

Almost linear scaling of relative J/ψ yield with relative charged-particle multiplicity is observed.

J/ψ vs. multiplicity in pp at \sqrt{s} = 13 TeV

* Highest ever multiplicity reached by ALICE in pp collisions

Almost linear scaling of relative J/ψ yield with relative charged-particle multiplicity is observed.

• Similar trends observed for forward-rapidity J/ ψ in pp collisions at \sqrt{s} = 5 and 13 TeV.

- Similar trends observed for forward-rapidity J/ψ in pp collisions at $\sqrt{s} = 5$ and 13 TeV.
- Faster than linear scaling with multiplicity for J/ψ at mid-rapidity in pp at $\sqrt{s} = 13$ TeV

▶i.e. w/o rapidity gap between signal and multiplicity estimator

- Similar trends observed for forward-rapidity J/ψ in pp collisions at $\sqrt{s} = 5$ and 13 TeV.
- Faster than linear scaling with multiplicity for J/ψ at mid-rapidity in pp at $\sqrt{s} = 13$ TeV

▶i.e. w/o rapidity gap between signal and multiplicity estimator

Introducing a rapidity gap: significantly reduces deviation from linear multiplicity scaling

- Similar trends observed for forward-rapidity J/ψ in pp collisions at $\sqrt{s} = 5$ and 13 TeV.
- Faster than linear scaling with multiplicity for J/ ψ at mid-rapidity in pp at \sqrt{s} = 13 TeV

▶i.e. w/o rapidity gap between signal and multiplicity estimator

- Introducing a rapidity gap: significantly reduces deviation from linear multiplicity scaling
- Sign of autocorrelation (e.g. jet bias) w/o rapidity gap between signal and multiplicity estimator

- Similar trends observed for forward-rapidity J/ψ in pp collisions at $\sqrt{s} = 5$ and 13 TeV.
- Faster than linear scaling with multiplicity for J/ ψ at mid-rapidity in pp at \sqrt{s} = 13 TeV

▶i.e. w/o rapidity gap between signal and multiplicity estimator

- Introducing a rapidity gap: significantly reduces deviation from linear multiplicity scaling
- Sign of autocorrelation (e.g. jet bias) w/o rapidity gap between signal and multiplicity estimator
- Physics scenario such as saturation would influence differently HF production at mid or forward rapidity

- Similar trends observed for forward-rapidity J/ψ in pp collisions at $\sqrt{s} = 5$ and 13 TeV.
- Faster than linear scaling with multiplicity for J/ ψ at mid-rapidity in pp at \sqrt{s} = 13 TeV

▶i.e. w/o rapidity gap between signal and multiplicity estimator

- Introducing a rapidity gap: significantly reduces deviation from linear multiplicity scaling
- Sign of autocorrelation (e.g. jet bias) w/o rapidity gap between signal and multiplicity estimator
- Physics scenario such as saturation would influence differently HF production at mid or forward rapidity
- Linear trend is also observed for light flavors, where there is rapidity gap in the measurement of multiplicity (by forward rapidity detector V0M) and signal (by mid-rapidity detector).

▶Event activity associated with production of light flavor and heavy flavor is nearly same.

Model Study: Mid-rapidity J/ ψ yield vs. multiplicity in pp at $\sqrt{s} = 13$ TeV

Stronger than linear increase of J/ψ yield is observed towards higher multiplicity

Theoretical models

- String percolation
- Hydro dynamical evolution (EPOS3)
- Multiple parton interaction (PYTHIA8)
- Contributions of higher Fock states

Ferreiro PRC86 (2012) 034903 EPOS3 Phys. Rept.350 (2001) 93

IA8 Comput. Phys.Commun.178(2008)852

Kopeliovich PRD88 (2013) 116002

Model Study: Mid-rapidity J/ ψ yield vs. multiplicity in pp at $\sqrt{s} = 13$ TeV

\$ Stronger than linear increase of J/ψ yield is observed towards higher multiplicity

Theoretical models

- String percolation
- Hydro dynamical evolution (EPOS3)
- Multiple parton interaction (PYTHIA8)
- Contributions of higher Fock states

- The high p_T analysis is based on EMCAL triggered data
- The increase of J/ψ production as a function of multiplicity seems steeper at higher transverse momenta
- **The** p_T dependence behavior is explained at least qualitatively by PYTHIA8, which includes MPI processes.

 Ferreiro
 PRC86 (2012) 034903

 EPOS3
 Phys. Rept.350 (2001) 93

 PYTHIA8
 Comput. Phys.Commun.178(2008)852

 Kopeliovich
 PRD88 (2013) 116002

What does PYTHIA8 tell us?

- **❖** J/ψ production has contributions from dedicated processes in PYTHIA8:
 - ✓ Initial c or b quarks originate via first hardest 2->2 partonic interactions
 - ✓ Has finite production probability from the subsequent hard processes in MPI
 - ✓ Heavy quarks from gluon splitting
 - ✓ Gluons from initial/final state radiations
 - ✓ Color reconnection (at the hadronization stage)

- The events with a small number of MPI contribute to the low multiplicity interval, while high multiplicity events are dominated by a large number of MPI
- **❖ Monash 2013 tuned PYTHIA8 describes well the data in the low multiplicity region**

What does EPOS3 tell us?

❖ EPOS3 imposes the same theoretical scheme in pp, pA and AA systems

- ✓ Initial conditions followed by a hydrodynamical evolution
- ✓ Initial conditions based on "Gribov-Regge" formalism. Multiple interaction occurs in parallel

- **❖** The EPOS calculation is for D meson, which should be a very good proxy for J/ψ.
- The good description of the data with EPOS3 model shows that the energy density reached in pp collisions at the LHC is high enough to apply hydrodynamical evolution
- **❖** Result of EPOS version 3.1 and 3.2 differ significantly

What does Percolation tell us?

- High-energy hadronic collisions are driven by the exchange of color sources (strings) between the projectile and the target
- The number of parton-parton collisions is reflected as the number of produced strings (N_s)
 - **√** J/ψ multiplicity α N_s
 - ✓ Charged particle multiplicity αVN_s

Ferreiro et al. Phys. Rev. C86 (2012) 034903

What does Percolation tell us?

- High-energy hadronic collisions are driven by the exchange of color sources (strings) between the projectile and the target
- **❖** The number of parton-parton collisions is reflected as the number of produced strings (*N*_s)
 - **√** J/ψ multiplicity α N_s
 - ✓ Charged particle multiplicity αVN_s

At Low multiplicity

$$rac{n_{J/\psi}}{\langle n_{J/\psi}
angle} = rac{rac{dN}{d\eta}}{\left\langle rac{dN}{d\eta}
ight
angle}$$

Ferreiro et al. Phys. Rev. C86 (2012) 034903

What does Percolation tell us?

- High-energy hadronic collisions are driven by the exchange of color sources (strings) between the projectile and the target
- **❖** The number of parton-parton collisions is reflected as the number of produced strings (*N*_s)
 - **√** J/ψ multiplicity α N_s
 - ✓ Charged particle multiplicity α $\forall N_s$

At Low multiplicity

$$rac{n_{J/\psi}}{\langle n_{J/\psi}
angle} = rac{rac{dN}{d\eta}}{\left\langle rac{dN}{d\eta}
ight
angle}$$

At High multiplicity

$$rac{n_{J/\psi}}{\langle n_{J/\psi}
angle} = \langle
ho
angle \left(rac{rac{dN}{d\eta}}{\left\langle rac{dN}{d\eta}
ight
angle}
ight)^2$$

Ferreiro et al. Phys. Rev. C86 (2012) 034903

What does "higher Fock states" model tell us?

- Higher Fock component: In high energy nuclei, gluons at small-x overlap longitudinally, act as a single source of gluons
- The inelastic collisions of the Fock components lead to high hadron multiplicity
- **The relative production of J/ψ is enhanced in such gluon-rich collisions**

$$R_h^{pp} \equiv \frac{dN_h^{pp}/dy}{\langle dN_h^{pp}/dy \rangle},$$

$$R_{J/\Psi}^{pp} \equiv \frac{dN_{J/\Psi}^{pp}/dy}{\langle dN_{J/\Psi}^{pp}/dy \rangle}.$$

• More gluons participating in collisions with $R_h^{pp} > 1$, explains why $R_{pp}^{J/\Psi}$ rises with increasing R_h

- Forward rapidity quarkonia vs. mid rapidity charged-particle multiplicity is showing almost a linear increase, irrespective of collision energy.
- ightharpoonup J/Ψ production at forward rapidity is approximately linear as a function of midrapidity multiplicity, while a faster than linear trend is observed for J/Ψ without rapidity gap.

- Forward rapidity quarkonia vs. mid rapidity charged-particle multiplicity is showing almost a linear increase, irrespective of collision energy.
- ightharpoonup J/Ψ production at forward rapidity is approximately linear as a function of midrapidity multiplicity, while a faster than linear trend is observed for J/Ψ without rapidity gap.
- \succ New results hinting for auto-correlation and jet-bias for mid rapidity J/ψ vs. mid rapidity charged-particle multiplicity study.

- Forward rapidity quarkonia vs. mid rapidity charged-particle multiplicity is showing almost a linear increase, irrespective of collision energy.
- ightharpoonup J/Ψ production at forward rapidity is approximately linear as a function of midrapidity multiplicity, while a faster than linear trend is observed for J/Ψ without rapidity gap.
- \succ New results hinting for auto-correlation and jet-bias for mid rapidity J/ψ vs. mid rapidity charged-particle multiplicity study.
- Another possible explanation: Physics scenario such as saturation would influence differently HF production at mid or forward rapidity.

- Forward rapidity quarkonia vs. mid rapidity charged-particle multiplicity is showing almost a linear increase, irrespective of collision energy.
- ightharpoonup J/Ψ production at forward rapidity is approximately linear as a function of midrapidity multiplicity, while a faster than linear trend is observed for J/Ψ without rapidity gap.
- \succ New results hinting for auto-correlation and jet-bias for mid rapidity J/ψ vs. mid rapidity charged-particle multiplicity study.
- Another possible explanation: Physics scenario such as saturation would influence differently HF production at mid or forward rapidity.
- Event generators including MPI reproduce well the data, thus revealing the importance of MPI in hadronic collisions.

ALICE has performed the study of J/ ψ as a function of multiplicity for pp collisions at \sqrt{s} =13 TeV, where the highest multiplicity measured by ALICE in pp collisions has been reached

- Forward rapidity quarkonia vs. mid rapidity charged-particle multiplicity is showing almost a linear increase, irrespective of collision energy.
- ightharpoonup J/Ψ production at forward rapidity is approximately linear as a function of midrapidity multiplicity, while a faster than linear trend is observed for J/Ψ without rapidity gap.
- \succ New results hinting for auto-correlation and jet-bias for mid rapidity J/ψ vs. mid rapidity charged-particle multiplicity study.
- Another possible explanation: Physics scenario such as saturation would influence differently HF production at mid or forward rapidity.
- Event generators including MPI reproduce well the data, thus revealing the importance of MPI in hadronic collisions.

Thank you!!

Multiplicity determination

* Charged-particle multiplicity is measured using the number of SPD tracklets in $|\eta|<1$. The variation of the SPD efficiency with the z position of the primary vertex (z_{vertex}) is corrected using a data-driven method.

$$\Delta N = \frac{\langle N_{\text{trk}} \rangle (z_{\text{v}}^0) - \langle N_{\text{trk}} \rangle (z_{\text{v}})}{\langle N_{\text{trk}} \rangle (z_{\text{v}})}$$

$$N_{\text{trk}}^{\text{corr}}(z_{\nu}) = N_{\text{trk}}(z_{\nu}) + \Delta N_{\text{rand}}$$

- ***** Here, $\Delta N_{\rm rand}$ follows a Poissonian distribution centered around ΔN .
- * z_v^o corresponds to z_{vertex} position where $\langle N_{\text{trk}} \rangle$ is maximum.
- ❖ The efficiency loss at z₀ and other track-toparticle-corrections need to be taken into account to evaluate the actual charged-particle value.

$$\frac{\langle dN_{\mathrm{ch}}/d\eta\rangle_{i}}{\langle dN_{\mathrm{ch}}/d\eta\rangle} = \frac{f(\langle N_{\mathrm{trk}}^{\mathrm{corr}}\rangle_{i})}{\langle dN_{\mathrm{ch}}/d\eta\rangle}_{\mathrm{INEL}} > 0$$

❖ The conversion function "f" is estimated using Monte Carlo simulations.

Y Vs. multiplicity

JHEP04(2014)103

- The excited-to-ground-states ratios, Y(nS)/Y(1S), are found to decrease with increasing charged-particle multiplicity.
- **The tightest bound state, Y(1S), was observed to be less suppressed than the more loosely bound excited states, Y(2S) and Y(3S).**
- * Global behavior of double ratio has been observed irrespective of the collisions system; pp, p-Pb, and Pb-Pb.

Analysis strategy

> Silicon Pixel Detector (SPD) is used for charged particle and vertex determination

$$J/\psi \rightarrow e^+e^-$$

- > MB trigger
- $> -0.9 < \eta < 0.9$
- > Track quality cuts
- Rejection of tracks from photon conversion
- > TPC electron identification

$$J/\psi \rightarrow \mu^+\mu^-$$

- Dimuon trigger: MB and two opposite sign muon tracks
- $> -4.0 < \eta < -2.5$
- > 17.6 cm < R_{abs} < 89.5 cm

(R_{abs} = Radial position of the track at the end of the absorber)

Energy dependence of J/ψ yield vs. multiplicity

Trend is independent of colliding energy.

Double ratio

- The double ratio Υ(1S)/J/ψ and Υ(2S)/Υ(1S) has been studied for pp@ 13 TeV
 - > The ratio is found to be unity irrespective of charged-particle multiplicity.
 - \rightarrow The multiplicity dependence production is same for J/ ψ , Y(1S) and Y (2S).
 - Υ(nS)/Υ (1S), are found to decrease with increasing charged-particle multiplicity, when Υ and charged particles are measured in mid-rapidity. (CMS Collaboration, JHEP04(2014)103)

Quarkonium vs. multiplicity

- The multiplicity dependence production is same for J/ψ , $\Upsilon(1S)$ and $\Upsilon(2S)$.
 - ► The event activity associated with the production of heavy-flavor is also independent of quark content of the particle