

Forward-rapidity J/ψ production in Pb-Pb collisions with ALICE at the LHC

Hushnud Hushnud

(On behalf of the ALICE Collaboration)
Saha Institute of Nuclear Physics

3rd Heavy Flavor Meet

18th - 20th March, 2019, IIT Indore

Quark-Gluon Plasma and Heavy-ion Collisions

QGP is formed for short time (\sim 10 fm/c)

How do we understand the properties of this medium?

By studying specific probes such as Jets, strange particles, dileptons, quarkonium charmonium and bottonium) etc..

Such conditions exist(ed)

- Few micro seconds after the Big-Bang.
- > At the core of neutron stars.

Similar conditions can be created in laboratory.

using heavy-ion collisions.

Charmonium as QGP probes

Charmonium is a bound state of charm (c) and anti-charm (\overline{c}) quarks.

Charmonium suppression:

Color screening of the deconfined plasma melts the $c\bar{c}$ pairs.

 J/ψ is suppressed.

Matsui and Satz, PLB 178 (1986) 416

Differences in the charmonium binding energies lead to a sequential melting with increasing temperature.

Charmonium regeneration:

Energy Density

- \rightarrow With increasing collision energy, the number of $c\bar{c}$ pairs increases.
- An enhancement via (re)combination of $c\bar{c}$ pairs producing quarkonia can take place at hadronization or during QGP stage.

R. Thews et al, PRC 63 (2001) 054905 P. Barun- Muzinger, J. Stachel, PLB 490 (2000) 196

J/ψ measurement with the ALICE detector

Forward Muon Arm

- $\Box J/\psi \rightarrow \mu^{+}\mu^{-}$ (B.R.= 5.93%)
- \Box 2.5 < y_{Lab} < 4.0
- \Box Di- μ : $p_{\rm T} > 0$
- \Box Identification and tracking of μ is done in Muon Spectrometer

Event and track selection

General features of event and track selections are:

Event selection

- 1. Rejection of beam gas and EM interactions (V0 and ZDC)
- 2. SPD for vertex determination.

Trigger

V0+Dimuon trigger for muon analysis

Centrality of the collisions

V0 and ZDC detector for centrality estimations

Muon track selection

- 1. Muon tracking-trigger matching.
- 2. $-4.0 < \eta_u < -2.5$
- 3. $17.6 < R_{abs} < 89 \text{cm}$ ($R_{abs} = \text{track}$ radial position at the absorber end)

Muon pair selection

- 1. $2.5 < y_{Lab}^{\mu\mu} < 4$
- 2. Opposite sign charges

Analysis steps

- The signal is extracted by fitting the dimuon invariant mass distribution with different background and signal functions.
- The number of J/ψ are further corrected by the detector acceptance and efficiency obtained by MC simulation.
- Realistic embedded MC simulation (in order to have the relevant underlying event and multiplicities in the muon arm) is done using the input shapes of p_T and y distributions tuned on data.
- \star J/ψ cross-sections measured in pp collisions at the same energy as vacuum reference.

Observables: R_{AA}

Nuclear Modification Factor (R_{AA})

Ratio of the quarkonium yield in AA (Y_{AA}) with respect to pp collisions, scaled by the nuclear overlap function T_{AA} (taken from Glauber model)

$$R_{\rm AA} = \frac{Y_{\rm AA}^{\rm J/\psi}}{\langle T_{\rm AA} \rangle \sigma_{\rm pp}^{\rm J/\psi}}$$

$$R_{\rm AA} \neq 1$$
 \longrightarrow hot/cold nuclear matter effects $=$ $R_{\rm AA} < 1$ \longrightarrow J/ ψ suppression $R_{\rm AA} > 1$ \longrightarrow J/ ψ enhancement

J/ψ in Pb-Pb collisions at 5.02 TeV

PLB 766 (2017) 212 (ALICE), PRL 98 (2007) 232301 (PHENIX)

At SPS and RHIC energies

- $ightharpoonup J/\psi$ suppression is clearly visible
- > Suppression increases with centrality

At LHC energies

- ➤ Less suppression is observed
- Interplay between color screening and regeneration mechanism.
- Saturation of R_{AA} as a function of centrality rather than further decrease.

J/ψ vs centrality in Pb-Pb collisions at 5.02 TeV

PLB 766 (2017) 212

 \Box $p_{\rm T} > 0.3$ GeV/c to suppress the contribution from photoproduction relevant in (semi)-peripheral collisions.

Statistical Hadronization: [continuous blue shade] Andronic et al., Nucl. Phys. A 904-905 (2013) 535c

Co-movers interaction model: [continuous green shade] Ferreiro, Phys. Lett. B 731 (2014) 57

Transport model (TM1): [slanted red lines]
Du and Rapp, Nucl. Phys. A 859 (2011) 114-125

Transport model (TM2): [slanted blue lines] Zhou et al., Phys. Rev C 89 no.5, 459 (2014) 054911

- ☐ All models can describe the data but with large uncertainties.
- ☐ Precise open charm cross section and differential analysis might help to further discriminate between models.

More differential J/ ψ R_{AA} : centrality, p_T and rapidity

Centrality (in *p*_T **ranges)**

- \Box In central collisions, smaller suppression for lower p_T J/ψ as expected by (re)generation.
- Well reproduced by models which include J/ψ (re)generation (TM1 [Nucl. Phys. A (2011) 114]).
- \Box Stronger centrality dependence at higher p_T .

$p_{\rm T}$ (in centrality ranges)

- \square Suppression is stronger for higher p_T and most central collisions.
- \Box Weak $p_{\rm T}$ dependence of J/ψ suppression in semi-peripheral collisions .
- ☐ Trend is well reproduced by TM1 model within the uncertainties.

Rapidity (in centrality ranges)

 \square R_{AA} in various centrality bins shows weak rapidity dependence.

Multi-differential J/ψ measurement in Pb-Pb collisions at 5.02 TeV

- ightharpoonup A strong rapidity dependence is measured for J/ ψ R_{AA} at $\sqrt{s_{NN}} = 2.76$ TeV which shows a trend opposite to that of shadowing predictions.
- The multi-differential measurement of J/ ψ R_{AA} as a function of centrality, p_T , and rapidity is ongoing and will provide more insight into the interplay between suppression and (re)generation in Pb-Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV.

Observables: J/ψ flow

- Non central AA collisions result in an azimuthally anisotropic distribution of particles in coordinate space.
- Pressure gradients and the interactions between the particles lead to momentum anisotropy.
- This anisotropy is quantified by the 2^{nd} order coefficient (v_2) of the Fourier expansion with respect to the reaction plane

$$v_2 = \langle \cos 2(\phi_{\mu\mu} - \psi_{EP}) \rangle$$

❖ J/ψ produced through (re)generation should inherit the charm-quark flow in QGP medium.

J/ ψ flow in Pb-Pb at 5.02 TeV: elliptic flow (v_2)

PRL 119(2017) 242301

- Both the bound state charmonium and prompt open-charm mesons show non-zero elliptic flow.
- \circ Transport models have difficulties in reproducing J/ ψ v_2 in the high- p_T region ($p_T > 7$ GeV/c).

J/ ψ flow in Pb-Pb at 5.02 TeV: triangular flow (v_3)

PRC 81 (2010) 054905

- \longrightarrow A non-zero v_3 flow of J/ψ (3.7σ significance) has been measured.
- \longrightarrow v_3 is created by event-by-event fluctuations of the collision geometry.

J/ψ flow in Pb-Pb at 5.02 TeV

- Ratio of v_3/v_2 as function of p_T for different centrality bins.
- $J/\psi v_3/v_2$ is significantly lower (4.6 σ) with respect to that of charged particles.

J/ ψ mean $\langle p_T \rangle$ in Pb-Pb at 5.02 TeV

- \checkmark The J/ψ $\langle p_T \rangle$ smaller in central events than in peripheral collisions indicates the (re)generation for central collisions.
- The results of r_{AA} at 5.02 TeV and 2.76 TeV are compatible within uncertainties.
- \checkmark The transport model does not reproduce the r_{AA} at intermediate centralities.

Coherent photoproduction

First observation of an excess in the yield of J/ ψ at very low $p_{\rm T}$ (< 0.3 GeV/c) in peripheral Pb-Pb hadronic collisions at $\sqrt{s_{\rm NN}}$ = 2.76 TeV. This excess is attributed to coherent photoproduction of J/ ψ .

PRL 116 (2016) 222301

J/ψ photoproduction in peripheral Pb-Pb collisions at 5.02 TeV

- \checkmark The coherently photo-produced J/ ψ cross section is compared with the theoretical models.
- \checkmark The challenge for models of J/ψ photoproduction is to calculate the photo-flux when the nucleus breaks during the collisions.

Summary

- ✓ R_{AA} measurement at low p_T provides evidence for a competition between suppression and (re)generation for charmonium.
- \checkmark At high p_T the suppression effect is dominant.
- ✓ Differential R_{AA} analyses should be able to put constraints on the model.
- ✓ A significant non-zero v_2 has been observed and for $p_T > 7 \text{ GeV}/c$ models significantly undershoot the data at forward rapidity.
- ✓ First observation of a non-zero v_3 for J/ ψ has been shown.
- ✓ J/ ψ mean $\langle p_T \rangle$ and r_{AA} results has been shown and compared with the model predictions.
- ✓ Coherent J/ ψ photoproduction cross-sections in peripheral Pb-Pb collisions are reasonably well reproduced by models.

