Measurement of quarkonium production as a function of multiplicity in pp collisions with ALICE

Anisa Khatun
For the ALICE Collaboration
Aligarh Muslim University
Saha Institute of Nuclear Physics

3rd Heavy Flavour Meet 2019 IITI, Indore, India

Outline

- Motivation
- Multiplicity Dependence
- Theoretical Approaches
- Experimental Method
- Results
- Summary

Motivation

J/ψ production in Pb-Pb collisions:

An important tool to probe the formation of QGP.

- J/ψ suppression [T.Matsui and H.Satz,PLB178 (1986) pp.416-422].
- (re)generation of charmonium [R. Thews et al., PRC63 (2001) 054905]
 [P. Braun-Munzinger et al., PLB490 (2000) 196-202].

Quarkonium production in small systems, particularly in pp collisions:

- Provides a crucial test for hadronisation models and QCD.
- Baseline for p-Pb and Pb-Pb measurements.

Multiplicity dependence of quarkonium production in pp collisions:

- Correlation between soft and hard processes.
- To understand the effect of Multiple Parton Interactions (MPI).
- MPI contribution to hard processes [Sjöstrand & van Zijl, PRD36 (1987) 2019].
- To look for possible collective behaviour in small systems.

<u>ALICE observations in pp collisions</u>

• Increase of the relative yield with multiplicity observed for D mesons and J/ψ in pp collisions at $\sqrt{s} = 7$ TeV.

ALICE, JHEP 09 (2015) 148

- Independent from hadronisation.
- Mid-rapidity and forward rapidity J/ψ don't show the same trend for the highest multiplicity bin.

[ALICE, JHEP 09 (2015) 148].

ALICE observations in pp collisions

Mid-rapidity pp √s = 13 TeV

- Multiplicity reached in pp collisions at $\sqrt{s} = 13$ TeV is twice that at $\sqrt{s} = 7$ TeV.
- EMCAL triggered data extend J/ψ p_{τ} reach.
- High- p_{τ} J/ψ indicate even stronger increase with multiplicity.

Theoretical interpretations

PYTHIA8 simulation:

[Comput.Phys.Commun.178 (2008) 852-867]

- Hard processes in MPI.
- Gluon splitting.
- Initial/final state radiation.

EPOS3:

[Phys.Rept. 350 (2001) 93-289]

- Gribov-Regge formalism (MPI) included.
- Hydro evolution of the system.

Percolation model:

[PRC86 (2012)034903]

- Linear increase at low density.
- Quadratic increase at higher density.

Kopeliovich et al:

[PRD 88, 116002 (2013)]

- Contributions of higher Fock states to reach high multiplicity in pp.
- •Higher number of gluons \rightarrow J/ψ rate also enhanced.

ALI-PREL-128845

Theoretical model predictions also give similar multiplicity dependence in pp collisions at $\sqrt{s} = 13$ TeV at mid-rapidity.

Quarkonium measurements with ALICE


```
J/\psi = e^+ + e^- (Central Barrel: |\eta| < 0.9)
Y = \mu^+ + \mu^- (Muon Spectrometer: -4.0 < \eta < -2.5)
```


Analysis ingredients

ALICE

- Data taken at 5.02 and 13 TeV.
- Minimum bias events, MB.
- Di-muon events, CMUL.
- Pile-up events are rejected.
- Monte-Carlo are used to determine $dN_{ch}/d\eta$ from measured number of SPD tracklets.
- One charged-particle required within $|\eta|$ <1 i.e. INEL>0 event class selected.
- E, efficiency factor that includes corrections due to event class, trigger selection and pile-up rejection.

$$\frac{\mathrm{d} N_{J/\psi}/\mathrm{d} y}{\langle \mathrm{d} N_{J/\psi}/\mathrm{d} y \rangle} = \frac{N_{J/\psi}^{i}}{N_{J/\psi}^{tot}} \times \frac{N_{MB}^{tot}}{N_{MB}^{i}} \times \epsilon$$

Event Selection Cuts:

- Events with a reconstructed SPD vertex
- \bullet $N_{\text{contributor}} > 0$
- \circ $\sigma^{SPD}>0.25$ cm
- $|z^{SPD}| < 10 \text{ cm}$
- $|\eta|$ <1 on SPD tracklets

MC particle selection:

- Oharge ≠ 0
- Physical primary
- \bullet $|\eta|<1$
- z-Vertex within 10 cm

Relative yield i = Multiplicity bin

Track and tracklet selection

$$\Delta \theta_{\text{MAX}} = \theta_0 - \theta_1 (25 \,\text{mrad})$$

Muon channel

- Unlike-sign dimuon pair.
- -4.0 < η < -2.5 (for each muon), to reject tracks at the edge of the acceptance.
- \odot 17.6 < $R_{\rm abs}$ < 89.5 (cm) (for each muon), removes tracks crossing the thicker part of the absorber.
- Both μ^+ & μ^- matching the trigger.
- p X DCA (Distance of closest approach) only for Y.

ITS

Tracklets are defined by pairs of hits in the two SPD layers.

Quarkonium signal

Y family

- Signal extraction is done by fitting invariant mass of opposite sign di-muons.
- Extended Crystal Ball function (signal).
- Variable Width Gaussian (background).

Charged-particle measurements

The charged-particle density is calculated by

$$\left\langle \frac{\mathrm{d}N_{\mathrm{ch}}}{\mathrm{d}\eta} \right\rangle^{\mathrm{i}} = \frac{f \left\langle N_{trk}^{Corr} \right\rangle^{\mathrm{i}}}{\Delta\eta}$$

where, *f* is a polynomial function, used to take into account possible non-linearities.

<*N*^{corr}_{trk}> is the mean number of tracklets corrected by SPD acceptance and efficiency.

Here the pseudo-rapidity range is $|\eta|$ <1.

Results

J/ψ vs multiplicity in pp at \sqrt{s} = 5.02 TeV

- Multiplicity dependence of J/ ψ production is shown in pp at $\sqrt{s} = 5.02$ TeV.
- Relative J/ψ and relative chargedparticle density are measured for INEL>0 event class.
- Results are compared to diagonal correlation (y=x).
- Linear increase of relative J/ψ yield with the charged-particle multiplicity at forward rapidity.

* $\pm 1.4\%$ normalisation unc. On $< dN_{ch}/d\eta >$

J/ψ yield vs multiplicity in pp at \sqrt{s} = 13 TeV

- J/ψ yield as a function of multiplicity at high multiplicity pp 13 TeV.
- Relative multiplicity extended up to 8.
- Almost linear increment of relative yield with increase of multiplicity.

Energy dependence in pp collisions

- The results are compared to forward rapidity measurement in pp collisions at $\sqrt{s} = 13$ TeV.
- We observe a similar multiplicity dependence at forward rapidity.
- Linear increase of J/ψ yield as function of multiplicity.
- No strong change of multiplicity dependence with √s is observed at forward rapidity.

Rapidity dependence

- The results are compared to mid-rapidity measurements in pp collisions at $\sqrt{s} = 13$ TeV.
- Steeper increase at midrapidity compared to forward rapidity ← possibly due to an auto-correlation bias.

Y yield vs multiplicity in pp at $\sqrt{s} = 13$ TeV

- First ALICE measurement of Y production as a function of multiplicity in pp collisions at $\sqrt{s} = 13 \text{ TeV}$.
- Multiplicity is measured at midrapidity and Y is measured at forward rapidity – same as J/ψ.
- Y(1S) and Y(2S) yields increase linearly with multiplicity.

Comparison of Y(1S) to Y(2S)

- Ratio of excited state to ground state yield of Y.
- Y(1S)/Y(2S) is independent of multiplicity.
- The double ratio follows unity.
- Within uncertainty also consistent with the dropping multiplicity dependence observed by CMS (JHEP 04 (2014) 103).
- The increase is independent of the bottomonium resonance.

<u>Quarkonium state dependence</u>

- The ratio of Y to J/ψ shows almost no deviation from unity.
- Both J/ψ and Y have similar multiplicity dependence at forward rapidity.
- Multiplicity dependence is independent of invariant mass and quark content of quarkonium states.

Comparison with model calculations

- Two model predictions are provided: from Kopeliovich et al. [PRD 88, 116002 (2013)] and from Ferreiro et al. (percolation model) [PRC86(2012)034903] at forward rapidity.
- The approach is similar to that discussed in the introduction.
- Both models show a similar trend at $\sqrt{s} = 5.02$ TeV.
- Stronger than linear increase with multiplicity is observed.
- The percolation model reproduces the data better.

Summary

- The multiplicity dependence of J/ψ , Y has been studied in pp collisions at different energies and rapidity region at ALICE.
- Relative yield of quarkonia increase linearly with multiplicity in pp collisions only at forward rapidity.
- Independently of energy and quark content.
- \odot The increase seems to strongly depend on the rapidity gap between the J/ ψ and the multiplicity measurement.
- Data are qualitatively described by theoretical models at $\sqrt{s} = 5.02$ TeV.
- It will be interesting to explore multiplicity dependence of quarkonia in more detail (i.e. $\psi(2s)$, $<p_{\tau}>-J/\psi$ measurements) in small systems.

Thank You.