

Charmonium production in p-Pb collisions at $\sqrt{s_{\text{NN}}}$ =8.16 TeV with the ALICE Muon Spectrometer

Jhuma Ghosh
Saha Institute of Nuclear Physics, Kolkata
On behalf of the ALICE collaboration
3rd Heavy Flavour Meet 2019

Goal of heavy-ion collisions?

At high energy density (> 1 GeV/fm³) hadronic matter undergoes a phase transition from confined state to a deconfined state of quarks and gluons, called Quark-Gluon Plasma (QGP).

Why do we study p-Pb collisions?

Charmonium is a bound state of charm (c) and anti-charm (\overline{c}) quarks. Colour screening of binding potential prevents charmonium formation in QGP. Cold Nuclear Matter (CNM) effects like energy loss, shadowing or anti-shadowing (modification of the Parton Distribution Function) and comovers absorption modify the charmonium yields in p-Pb collisions, where no QGP is expected. In addition to those effects, there are regeneration or recombination of charmonium which can enhance charmonium yield.

➤ The precise assessment of the mechanisms which affect charmonium yield in p-Pb collisions is important to correctly disentangle the QGP effects in Pb-Pb collisions.

The ALICE detectors

Observable

Nuclear modification factor :
$$R_{\text{pPb}}^{\text{J/\psi}} = \frac{N_{\text{J/\psi}}^{\text{corr}}}{< T_{\text{pPb}} > N_{\text{MB}}.\text{BR}.\sigma_{\text{J/\psi}}^{\text{pp}}}$$

 $N^{\text{corr}}_{J/\psi}$ is $N_{J/\psi}/Ax\epsilon$, N_{MB} is the number of minimum bias events, T_{pPb} is the thickness function and $\langle T_{\rm pPb} \rangle = \langle N_{\rm coll} \rangle / \sigma^{\rm pp_inel}$

Centrality definition in p-A collisions: centrality selection is based on the energy measured with the ZDC (Zero Degree Calorimeter) in the Pb-going direction, deposited by the nucleons produced in the collision. The average number of binary nucleon collisions ($\langle N_{coll} \rangle$) in a given centrality range is estimated using a Glauber model of the collisions.

Ingredients of data analysis

 $N_{\rm J/\psi}$ and $N_{\rm \psi(2S)}$ are obtained from the invariant mass spectra

The $N_{J/\psi}$ and $N_{\psi(2S)}$ are then corrected by $Ax\varepsilon$ of the detector.

To calculate the $\mathbf{A}\mathbf{x}\mathbf{\varepsilon}$ a realistic MC is done using as input shapes of p_{T} and rapidity distributions tuned on data.

pp reference is obtained from the study of J/ ψ and ψ (2S) cross sections in pp collisions at the same energy.

$J/\psi R_{pPb}$ vs rapidity

- ☐ Stronger suppression is observed at forward rapidity, while R_{pPb} is compatible with unity at backward rapidity
- ☐ ALICE and LHCb results are in agreement at the same energy
- ☐ Models based on different shadowing implementations, CGC, energy loss, transport models and comovers well describe the data.

$J/\psi R_{pPb}$ and Q_{pPb} vs p_T and centrality

Heavy Flavour Meet 2019

 $R_{\rm pPb}$ shows a $p_{\rm T}$ dependence, with an increase from low to high $p_{\rm T}$ at both backward and forward rapidity

Q_{pPb} shows an increase from peripheral to central collisions at backward rapidity, whereas no strong centrality dependence is observed at forward rapidity.

$J/\psi Q_{pPb}$ vs p_T in central and peripheral collisions

Heavy Flavour Meet 2019

In central collisions, shadowing predicts a weaker $p_{\rm T}$ dependence w.r.t. the data whereas energy loss predicts a faster increase of $Q_{\rm pPb}$.

In peripheral collisions, theoretical models show no p_T dependence, consistent with the Q_{pPb} measurement

Multi-differential study of J/ψ

- \square Clear evolution of Q_{pPb} vs p_{T} in different centrality intervals
- \square At backward rapidity, enhancement in most central collisions for $p_T > 3$ GeV/c
- \square At forward rapidity, stronger suppression at low $p_{\rm T}$ in most central collisions and $Q_{\rm pPb}$ is compatible with unity for $p_{\rm T}$ > 7 GeV/c within uncertainties for all centrality intervals.

$R_{\rm pPb}$ of $\psi(2S)$ vs y compared to J/ ψ and CNM models

- Comparison of $\psi(2S)$ and J/ψ results with shadowing and energy loss models
- Calculations tuned on J/ ψ , but the effects included in the models are largely independent on the specific resonance, so the same behaviour is expected for $\psi(2S)$
- Shadowing and energy loss effects are not enough to explain $\psi(2S)$ suppression, especially at backward rapidity

$R_{\rm pPb}$ of $\psi(2S)$ vs y compared to final-state effects models

Two models compared to data:

- 1. "CGC + ICEM, Y. Ma et al." : soft color exchanges between $c\overline{c}$ hadronizing pair and comoving partons
- 2. "COMOVERS, E. Ferreiro": final-state interactions with the comoving medium

Models including final-state effects, together reproduce the $\psi(2S)$ behaviour at backward and forward rapidities at both $\sqrt{s_{\rm NN}} = 5.02$ and 8.16 TeV.

$R_{\rm pPb}$ of $\psi(2S)$ vs. $p_{\rm T}$

- ✓ No significant energy and p_T dependence is observed
- ✓ Stronger suppression of $\psi(2S)$ visible over the full p_T range

$R_{\rm pPb}$ of $\psi(2S)$ vs. centrality

The $\psi(2S)$ suppression is found to follow the same trend as in case of the J/ ψ at forward rapidity.

At backward rapidity, stronger $\psi(2S)$ suppression compared to the J/ψ , is also visible as a function of centrality

Summary

- J/ψ shows a stronger suppression at forward rapidity than at backward rapidity, where R_{pPb} is compatible with unity.
- **A**t backward rapidity, high p_T J/ψ are enhanced for more central collisions, whereas at forward rapidity, low p_T J/ψ gets more suppressed for more central collisions.
- Theoretical models qualitatively describe the J/ψ data.

$\psi(2S)$

- $\psi(2S)$ shows a stronger suppression than J/ψ especially at backward rapidity.
- Models including final-state effects needed to explain the $\psi(2S)$ behaviour at backward rapidity.
- R_{pPb} of $\psi(2S)$ is found to be independent of energy for p-Pb collisions at $\sqrt{s_{NN}}$ = 5.02 TeV and $\sqrt{s_{NN}}$ = 8.16 TeV.

THANK