

Υ production in p-Pb collisions at $\sqrt{s_{\mathrm{NN}}}=8.16$ TeV with ALICE at the LHC

Wadut Shaikh

Saha Institute of Nuclear Physics, Kolkata On behalf of the ALICE Collaboration

3rd Heavy Flavour Meet - 2019 Indian Institute of Technology Indore, India

March 20, 2019

Outline

- Physics Motivation
- 2 Upsilon(1S) $R_{\rm pA}$ vs rapidity and $p_{\rm T}$
- f I Upsilon(1S) $Q_{
 m pA}$ vs centrality
- 4 Conclusion

Physics Motivation

Quarkonia $(q\bar{q})$, i.e. charmonium $(c\bar{c})$ and bottomonium $(b\bar{b})$, are an important probe to study the properties of the Quark-Gluon Plasma (QGP) created in heavy-ion collisions at LHC energies. Various effects influence the production of quarkonia.

Suppression or Enhancement of $q\bar{q} \Rightarrow \mathsf{QGP}$

Suppression: dissociation via color screening

Enhancement: recombination of $q\bar{q}$

Note

For Υ less/no (re)generation, due to the small number of produced b quarks

▲ A sequential suppression of bottomonium states has been observed ordered by their binding energy in the presence of deconfined color medium.

Physics Motivation

Other effects not related to QGP may also influence the production of quarkonia.

Cold nuclear matter effects:

- Shadowing and anti-shadowing
- ⇒ modification of the PDF in nucleus with respect to free nucleons.
- Energy loss
- \Rightarrow gluon radiation induced by multiple parton scattering in the nucleus
- Final-state effects
- ⇒ interaction with the hadronic medium
- ightharpoonup For more quantitative conclusions on sequential suppression in Υ , a precise assessment of these effects is also needed. These effects are studied in p-Pb collisions where QGP is not expected to be formed.

Upsilon in p-Pb 5.02 TeV

▶ $\Upsilon(1S)$ production measurement in p–Pb at $\sqrt{s_{\mathrm{NN}}} = 5.02$ TeV shows a suppression at forward rapidity and no significant suppression at backward rapidity

(Phys. Lett., B740:105-117, 2015)

- \Rightarrow The large statistics collected in p-Pb collisions at $\sqrt{s_{\rm NN}}=8.16$ TeV allows us to study Υ production as a function of centrality, $p_{\rm T}$ and rapidity.
- ▶ Integrated luminosity: $8.4\pm0.2~{\rm nb^{-1}}$ (p–Pb), $12.8\pm0.3~{\rm nb^{-1}}$ (Pb–p)

New at 8.16 TeV!

- $\Upsilon(1\mathsf{S})\ R_{\mathrm{pPb}}$ as a function of centrality and p_{T}
- Integrated $\Upsilon(2S)$ $R_{\rm pPb}$

◆□▶ ◆□▶ ◆■▶ ◆■▶ ■ 900

The Muon Spectrometer

 Υ is measured via dimuon decay channel with the ALICE Muon Spectrometer down to zero transverse momentum and pseudorapidity range -4 < $\eta_{\rm lab}$ < -2.5.

- p-Pb: forward (2.03 $< y_{\rm cms} < 3.53$)
- Pb-p: backward $(-4.46 < y_{cms} < -2.96)$

Dimuon invariant spectrum

p–Pb Pb–p

 \blacklozenge For differential study, we have divided the sample in 3 rapidity, 5 $p_{\rm T}$ and 4 centrality bins.

Nuclear modification factors $(R_{\rm pA})$

$$R_{\mathrm{pPb}} = rac{ extit{N}_{\Upsilon(1S)}}{\langle extit{T}_{\mathrm{pPb}}
angle} \cdot extit{N}_{\mathrm{MB}} \cdot (extit{A} imes arepsilon) \cdot extit{BR}_{\Upsilon(1S)
ightarrow \mu^+ \mu^-} \cdot \sigma_{\Upsilon(1S)}^{\mathrm{pp}}$$

The y and p_T integrated $R_{\rm pA}$ of $\Upsilon(1S)$ at 8.16 TeV:

$$R_{
m pA} = \!\! 0.778 \pm 0.052 ({
m stat}) \pm 0.045 ({
m syst}) \pm 0.034 ({
m global}) \ R_{
m Ap} = \!\! 0.871 \pm 0.052 ({
m stat}) \pm 0.050 ({
m syst}) \pm 0.038 ({
m global})$$

- ▶ Indication of $\Upsilon(1S)$ suppression observed both at forward and backward rapidities
- ▶ The significance of the suppression is about 2.8σ and 1.7σ in p–Pb and Pb–p, respectively
- $ightharpoonup R_{\mathrm{pPb}}$ is compatible at both energies

$\Upsilon(1S)$ R_{pPb} as function of y with model prediction

- ⇒ The shadowing calculation and energy loss describe the rapidity dependent results at forward rapidity within uncertainties while they overestimate the data at backward rapidity
- \Rightarrow \Upsilon(1S) $R_{\rm pPb}$ measurements at $\sqrt{s_{\rm NN}}=8.16$ TeV are compatible with those at $\sqrt{s_{\rm NN}}=5.02$ TeV

$\Upsilon(1\mathsf{S})$ R_{pPb} as function of p_{T} with model prediction

- \Rightarrow Stronger $\Upsilon(1S)$ suppression observed at low p_T both at forward and backward rapidities
- \Rightarrow Shadowing calculation describes the p_{T} -dependent results at forward rapidity within uncertainties while they overestimate the data at backward rapidity

Q_{pA} vs centrality

$$Q_{\mathrm{pPb}}^{i} = rac{N_{\Upsilon(1S)}^{i}}{\langle T_{\mathrm{pPb}}^{i}
angle \; . \; N_{\mathrm{MB}}^{i} \; . \; (A imes arepsilon) \; . \; BR_{\Upsilon(1S) o \mu^{+}\mu^{-}} \; . \; \sigma_{\Upsilon(1S)}^{\mathrm{pp}}}$$

Fist look at $Q_{\rm pA}$ of $\Upsilon(1S)$:

 \blacktriangleright at forward and backward rapidity, no strong centrality dependence of Q_{pA} within uncertainties.

Integrated $R_{\rm pA}$ of $\Upsilon(2S)$

The Υ(2S) is limited by the statistics and therefore p_T and y integrated result is presented.

- The two resonances show similar suppression, slightly larger for $\Upsilon(2S)$.
- LHCb(JHEP 11 (2018) 194), CMS(JHEP 04 (2014) 103) and ATLAS(Eur. Phys. J. C 78 (2018) 171) also observed more $\Upsilon(2S)$ suppression compared to the $\Upsilon(1S)$.

Conclusions

- Suppression of the ↑(1S) yields in p-Pb collisions is observed at both forward and backward rapidities w.r.t binary-scaled pp collisions at the same center-of-mass energy of 8.16 TeV
- The $R_{\rm pPb}$ values are similar at forward and backward rapidities with a hint for a stronger suppression at low $p_{\rm T}$
- At both rapidity intervals there is no evidence for a centrality dependence of the $\Upsilon(1S)$ $Q_{\rm pPb}$
- The results obtained at $\sqrt{s_{\rm NN}}=8.16$ TeV are compatible with those measured by ALICE in p–Pb collisions at $\sqrt{s_{\rm NN}}=5.02$ TeV during the LHC Run I
- Models based on nuclear shadowing and coherent parton energy loss fairly describe the data at forward rapidity, while they tend to overestimate the $R_{\rm pPb}$ at backward rapidity
- $\Upsilon(2S)$ $R_{\rm pPb}$ shows a similar suppression in the two investigated rapidity ranges. Shows with a hint of slightly larger suppression for $\Upsilon(2S)$ over $\Upsilon(1S)$

THANK YOU