JIMWLK evolution and small- x asymptotics of $2 n$-tuple Wilson lines correlators

Shaikh Khatiza Banu

Aligarh Muslim University (AMU)

In collaboration with, Dr. Raktim Abir and Mariyah Siddiqah

3rd Heavy Flavour Meet-2019, IITI, Indore, India.

Outlines

Deep Inelastic Scattering
Map of high energy QCD
Color Glass Condensate
JIMWLK Equation
High Energy Evolution of Color 2n-tuple Correlator
Dipole Evolution
Quadrupole Evolution
$2 n$-tuple correlator in the unitary limit

Deep Inelastic Scattering

DIS of a lepton on a hadron is the cleanest environment to probe the dynamics of strong interactions.

$$
e^{-}+p \rightarrow e^{-}+X
$$

$$
\begin{aligned}
Q^{2} & =-q^{2}(\text { Virtuality of photon }) \\
x & =\text { Bjorken variable } \\
s & =\frac{Q^{2}}{x} \\
Y & =\log (1 / \mathrm{x})
\end{aligned}
$$

Map of high energy QCD

Color Glass Condensate(CGC)

- Color: The effective degrees of freedom in this framework are color sources ρ at large- x and gluon fields at small- x.
- Glass: Due to time dilation, the evolution of fields is smaller than natural time scale and are disordered like glass.
- Condensate: Due to large occupation number of saturated gluons $\mathcal{O}\left(1 / \alpha_{s}\right)$.

Color Glass Condensate (CGC)

- Color Glass Condensate (CGC) is an effective theory which incorporates saturation dynamics at high energy.

- It separates large- x partons from small- x partons in the hadrons wavefunction.
- Fast partons are considered as static color current sources ρ for the small-x partons.

JIMWLK (Jalilian-Iancu-Mc Lerran-Weigert-Leonidov-Kovner) Equation

- Evolution equation for $\mathcal{W}[\rho]$ (JIMWLK)

$$
\frac{\partial}{\partial Y} \mathcal{W}_{Y}[\rho]=\mathcal{H} \mathcal{W}_{Y}[\rho]
$$

- $\mathcal{W}[\rho]$ (weight function) gives much more information about the saturated gluons and these are universal.

JIMWLK evolution and small- x asymptotics of 2 n -tuple Wilson lines correlators
$\left\llcorner_{\text {JIMWLK Equation }}\right.$

$$
\langle\mathcal{O}\rangle \equiv \int \mathcal{D} \rho \mathcal{O}[\rho] \mathcal{W}_{Y}[\rho]
$$

- $U_{x}=\mathcal{P} \exp \left(i g \int d x^{-} A^{a}\left(x^{-}, x\right) t^{a}\right)$
- $U_{x}=\mathcal{P} \exp \left(i g \int d x^{-} A^{a}\left(x^{-}, x\right) T^{a}\right)$
- Color dipole amplitude

$$
\mathcal{O}^{(2)} \equiv \operatorname{Tr}\left[U\left(x_{1}\right) U^{\dagger}\left(x_{2}\right)\right]
$$

- Quadrupole amplitude

$$
\mathcal{O}^{(4)} \equiv \operatorname{Tr}\left[U\left(x_{1}\right) U^{\dagger}\left(x_{2}\right) U\left(x_{3}\right) U^{\dagger}\left(x_{4}\right)\right]
$$

- Multipole amplitude

$$
\mathcal{O}^{(2 n)} \equiv \operatorname{Tr}\left[U\left(x_{1}\right) U^{\dagger}\left(x_{2}\right) U\left(x_{3}\right) U^{\dagger}\left(x_{4}\right) \ldots U\left(x_{2 n-1}\right) U^{\dagger}\left(x_{2 n}\right)\right]
$$

JIMWLK Equation for 2n-tuple

The energy evolution for gauge invariant operator \mathcal{O}

$$
\frac{\partial}{\partial Y}\langle\hat{\mathcal{O}}\rangle_{Y}=\langle\mathcal{H} \hat{\mathcal{O}}\rangle_{Y}
$$

$$
\mathcal{H} \equiv-\frac{1}{16 \pi^{3}} \int_{z} \mathcal{M}_{x z y}\left(1+\tilde{U}_{x}^{\dagger} \tilde{U}_{y}-\tilde{U}_{x}^{\dagger} \tilde{U}_{z}-\tilde{U}_{z}^{\dagger} \tilde{U}_{y}\right)^{a b} \frac{\delta}{\delta \alpha_{x}^{a}} \frac{\delta}{\delta \alpha_{y}^{b}}
$$

2n-tuple Correlator

$$
\begin{aligned}
& \frac{\partial}{\partial Y} \operatorname{Tr}\left[U\left(x_{1}\right) U^{\dagger}\left(x_{2}\right) U\left(x_{3}\right) U^{\dagger}\left(x_{4}\right) \ldots U\left(x_{2 n-1}\right) U^{\dagger}\left(x_{2 n}\right)\right]=\frac{\bar{\alpha}_{s}}{4 \pi}\left(\frac{1}{1+\delta_{n, 1}}\right) \times \\
& \int_{z} \sum_{k=0}^{\lfloor n / 2\rfloor-1} \sum_{l=0}^{n-1} \mathcal{K}_{(2 l+1 ; 2 l+2 k+1)}^{(2 l ; 2 l+2 k+2)} \operatorname{Tr}\left[U\left(x_{2 l+1}\right) U^{\dagger}\left(x_{2 l+2}\right) \ldots U\left(x_{2 l+1+2 k}\right) U^{\dagger}(z)\right] \operatorname{Tr}\left[U(z) U^{\dagger}\left(x_{2 l+2 k+2}\right) \ldots U\left(x_{2 l-1}\right) U^{\dagger}\left(x_{2 l}\right)\right] \\
& +\sum_{k=0}^{\lfloor n / 2\rfloor-1} \sum_{l=0}^{n-1} \mathcal{K}_{(2 l+2 ; 2 l+2 k+2)}^{(2 l+1 ; 2 l+2 k+3)} \operatorname{Tr}\left[U^{\dagger}\left(x_{2 l+2}\right) U\left(x_{2 l+3}\right) \ldots U^{\dagger}\left(x_{2 l+2+2 k}\right) U(z)\right] \operatorname{Tr}\left[U^{\dagger}(z) U\left(x_{2 l+2 k+3}\right) \ldots U^{\dagger}\left(x_{2 l}\right) U\left(x_{2 l+1}\right)\right] \\
& +\sum_{k=0}^{\lceil n / 2\rceil-2} \sum_{l=0}^{n-1} \mathcal{K}_{(2 l+1 ; 2 l+2 k+2)}^{(2 l ; 2 l+2 k+3)} \operatorname{Tr}\left[U\left(x_{2 l+1}\right) U^{\dagger}\left(x_{2 l+2}\right) \ldots U^{\dagger}\left(x_{2 l+1+2 k+1}\right)\right] \operatorname{Tr}\left[U\left(x_{2 l+2 k+3}\right) U^{\dagger}\left(x_{2 l+2 k+4}\right) \ldots . . U^{\dagger}\left(x_{2 l}\right)\right] \\
& +\sum_{k=0}^{\lceil n / 2\rceil-2} \sum_{l=0}^{n-1} \mathcal{K}_{(2 l+2 ; 2 l+2 k+3)}^{(2 l+12 l+2 k+4)} \operatorname{Tr}\left[U^{\dagger}\left(x_{2 l+2}\right) U\left(x_{2 l+3}\right) \ldots U\left(x_{2 l+2 k+3}\right)\right] \operatorname{Tr}\left[U^{\dagger}\left(x_{2 l+2 k+4}\right) U\left(x_{2 l+2 k+5}\right) \ldots U\left(x_{2 l+1}\right)\right] \\
& +\delta_{1, n \bmod 2} \sum_{l=0}^{\lceil n / 2\rceil-1} \mathcal{K}_{(2 l+1 ; 2 l+n)}^{(2 l i 2 l+n+1)} \operatorname{Tr}\left[U\left(x_{2 l+1}\right) U^{\dagger}\left(x_{2 l+2}\right) \ldots U\left(x_{2 l+n}\right) U^{\dagger}(z)\right] \operatorname{Tr}\left[U(z) U^{\dagger}\left(x_{2 l+n+1}\right) \ldots U\left(x_{2 l-1}\right) U^{\dagger}\left(x_{2 l}\right)\right] \\
& +\delta_{1, n \bmod 2} \sum_{l=0}^{\lceil n / 2\rceil-2} \mathcal{K}_{(2 l+2 ; 2 l+n+1)}^{(2 l+2 l+n+2)} \operatorname{Tr}\left[U^{\dagger}\left(x_{2 l+2}\right) U\left(x_{2 l+3}\right) \ldots U^{\dagger}\left(x_{2 l+n+1}\right) U(z)\right] \operatorname{Tr}\left[U^{\dagger}(z) U\left(x_{2 l+n+2}\right) \ldots U^{\dagger}\left(x_{2 l}\right) U\left(x_{2 l+1}\right)\right] \\
& +\delta_{0, n \bmod 2} \sum_{l=0}^{n / 2-1} \mathcal{K}_{(2 l+1 ; 2 l+n)}^{(2 l ; 2 l+n+1)} \operatorname{Tr}\left[U\left(x_{2 l+1}\right) U^{\dagger}\left(x_{2 l+2}\right) \ldots U^{\dagger}\left(x_{2 l+n}\right)\right] \operatorname{Tr}\left[U\left(x_{2 l+n+1}\right) U^{\dagger}\left(x_{2 l+n+2}\right) \ldots . . U^{\dagger}\left(x_{2 l}\right)\right] \\
& +\delta_{0, n \bmod 2} \sum_{l=0}^{n / 2-1} \mathcal{K}_{(2 l+2 ; 2 l+n+1)}^{(2 l+1 ; 2 l+n+2)} \operatorname{Tr}\left[U^{\dagger}\left(x_{2 l+2}\right) U\left(x_{2 l+3}\right) \ldots U\left(x_{2 l+n+1}\right)\right] \operatorname{Tr}\left[U^{\dagger}\left(x_{2 l+n+2}\right) U\left(x_{2 l+n+3}\right) \ldots U\left(x_{2 l+1}\right)\right] \\
& -\mathcal{P}_{2 n} \operatorname{Tr}\left[U\left(x_{1}\right) U^{\dagger}\left(x_{2}\right) U\left(x_{3}\right) U^{\dagger}\left(x_{4}\right) \ldots U\left(x_{2 n-1}\right) U^{\dagger}\left(x_{2 n}\right)\right]
\end{aligned}
$$

Schematic representation of 2 n-tuple correlators

JIMWLK evolution and small- x asymptotics of 2 n -tuple Wilson lines correlators
L High Energy Evolution of Color 2n-tuple Correlator

- Dipole Evolution

Dipole Evolution

- For dipole $n=1$,

$$
\begin{aligned}
\frac{\partial}{\partial Y}\left\langle\operatorname{Tr}\left[U\left(x_{1}\right) U^{\dagger}\left(x_{2}\right)\right]\right\rangle_{Y}=\frac{\bar{\alpha}_{s}}{4 \pi} \frac{1}{2} \int_{z} \mathcal{K}_{(1 ; 1)}^{(2 ; 2)}\langle & \left.\operatorname{Tr}\left[U\left(x_{1}\right) U^{\dagger}(z)\right] \operatorname{Tr}\left[U(z) U^{\dagger}\left(x_{2}\right)\right]\right\rangle_{Y} \\
& -\left(\mathcal{P}_{(1,2)}+\mathcal{P}_{(2,1)}\right)\left\langle\operatorname{Tr}\left[U\left(x_{1}\right) U^{\dagger}\left(x_{2}\right)\right]\right\rangle_{Y}
\end{aligned}
$$

- In the large N_{c} limit for large nucleus

JIMWLK(dipole) Equation \Leftrightarrow BK (Balitsky Kovchegov) Equation

$$
\frac{\partial}{\partial Y} S\left(x_{1}, x_{2}\right)=\frac{\bar{\alpha}_{s}}{4 \pi} \int_{z} \frac{\left(x_{1}-x_{2}\right)^{2}}{\left(x_{1}-z\right)^{2}\left(z-x_{2}\right)^{2}}\left[S\left(x_{1}, z\right) S\left(z, x_{2}\right)-S\left(x_{1}, x_{2}\right)\right]
$$

JIMWLK evolution and small- x asymptotics of 2 n -tuple Wilson lines correlators
$\left\llcorner_{\text {High Energy Evolution of Color 2n-tuple Correlator }}\right.$
$\left\llcorner_{\text {Quadrupole Evolution }}\right.$

Quadrupole

- For quadrupole $n=2$,

$$
\begin{aligned}
& \frac{\partial}{\partial Y}\left\langle\operatorname{Tr}\left[U\left(x_{1}\right) U^{\dagger}\left(x_{2}\right) U\left(x_{3}\right) U^{\dagger}\left(x_{4}\right)\right]\right\rangle_{Y} \\
= & \frac{\bar{\alpha}_{s}}{4 \pi} \int_{z} \mathcal{K}_{(1 ; 1)}^{(4 ; 2)}\left\langle\operatorname{Tr}\left[U\left(x_{1}\right) U^{\dagger}(z)\right] \operatorname{Tr}\left[U(z) U^{\dagger}\left(x_{2}\right) U\left(x_{3}\right) U^{\dagger}\left(x_{4}\right)\right]\right\rangle_{Y} \\
& +\mathcal{K}_{(2 ; 2)}^{(1 ; 3)}\left\langle\operatorname{Tr}\left[U^{\dagger}\left(x_{2}\right) U(z)\right] \operatorname{Tr}\left[U^{\dagger}(z) U\left(x_{3}\right) U^{\dagger}\left(x_{4}\right) U\left(x_{1}\right)\right]\right\rangle_{Y} \\
& +\mathcal{K}_{(3 ; 3)}^{(2 ; 4)}\left\langle\operatorname{Tr}\left[U\left(x_{3}\right) U^{\dagger}(z)\right] \operatorname{Tr}\left[U(z) U^{\dagger}\left(x_{4}\right) U\left(x_{1}\right) U^{\dagger}\left(x_{2}\right)\right]\right\rangle_{Y} \\
& +\mathcal{K}_{(4 ; 4)}^{(3 ; 1)}\left\langle\operatorname{Tr}\left[U^{\dagger}\left(x_{4}\right) U(z)\right] \operatorname{Tr}\left[U^{\dagger}(z) U\left(x_{1}\right) U^{\dagger}\left(x_{2}\right) U\left(x_{3}\right)\right]\right\rangle_{Y} \\
& +\mathcal{K}_{(1 ; 2)}^{(4 ; 3)}\left\langle\operatorname{Tr}\left[U\left(x_{1}\right) U^{\dagger}\left(x_{2}\right)\right] \operatorname{Tr}\left[U\left(x_{3}\right) U^{\dagger}\left(x_{4}\right)\right]\right. \\
& +\mathcal{K}_{(3 ; 2)}^{(4 ; 1)}\left\langle\operatorname{Tr}\left[U\left(x_{3}\right) U^{\dagger}\left(x_{2}\right)\right] \operatorname{Tr}\left[U\left(x_{1}\right) U^{\dagger}\left(x_{4}\right)\right]\right. \\
& -\mathcal{P}_{4}\left\langle\operatorname{Tr}\left[U\left(x_{1}\right) U^{\dagger}\left(x_{2}\right) U\left(x_{3}\right) U^{\dagger}\left(x_{4}\right)\right]\right.
\end{aligned}
$$

2n-tuple correlator in the unitary limit

- In the strong scattering regime $\left(r_{\perp} \gg 1 / Q_{s}(Y)\right)$ transverse separation between the partons is very large.
- In the limit $Y \rightarrow \infty$

$$
\frac{\partial}{\partial Y} \ln \mathcal{S}\left(x_{1}, x_{2}, \ldots x_{2 n-1}, x_{2 n}\right)=-\frac{\bar{\alpha}_{s}}{2}\left(\frac{1}{1+\delta_{n, 1}}\right) \ln \prod_{j=1}^{2 n}\left|x_{j}-x_{j+1}\right|^{2} Q_{s}^{2}(Y)
$$

- Levin-Tuchin asymptotic solution for 2n-tuple Wilson line correlator

$$
\mathcal{S}\left(x_{1}, x_{2}, \ldots x_{2 n-1}, x_{2 n}\right)=S_{0}^{(2 n)} \exp \left[-\frac{1+2 i \nu_{0}}{2\left(1+\delta_{n, 1}\right) \chi\left(0, \nu_{0}\right)} \ln ^{2}\left(\prod_{j=1}^{2 n}\left|x_{j}-x_{j+1}\right|^{2} Q_{s}^{2}(Y)\right)\right]
$$

Conclusion

- JIMWLK equation for general 2n-tuple correlator is derived in their fundamental representation.
- Real terms(splitting) and Virtual terms(without splitting) are explicit in integro-differential equation.
- We study the solution of the general evolution equation in the unitarity limit.
- The solution exhibits complete geometric scaling as in the case of color dipole deep inside the saturation region.

Thank You

Backup slides

$$
\begin{aligned}
\mathcal{K}_{(a ; b)}^{(c ; d)} & =\frac{\left(x_{a}-x_{d}\right)^{2}}{\left(x_{a}-z\right)^{2}\left(z-x_{d}\right)^{2}}+\frac{\left(x_{b}-x_{c}\right)^{2}}{\left(x_{b}-z\right)^{2}\left(z-x_{c}\right)^{2}}-\frac{\left(x_{a}-x_{b}\right)^{2}}{\left(x_{a}-z\right)^{2}\left(z-x_{b}\right)^{2}}-\frac{\left(x_{c}-x_{d}\right)^{2}}{\left(x_{c}-z\right)^{2}\left(z-x_{d}\right)^{2}} \\
\mathcal{P}_{2 n} & =\sum_{j=1}^{2 n} \frac{\left(x_{j}-x_{j+1}\right)^{2}}{\left(x_{j}-z\right)^{2}\left(z-x_{j+1}\right)^{2}}
\end{aligned}
$$

- Real terms
- Terms involving $U(z)$ or $U^{\dagger}(z)$
- $2 N$-tuple correlator to pair of $2 m$-tuple and $(2 N+2-2 m)$-tuple correlators.
- Virtual terms
- $2 N$-tuple correlator to pair of $2 m$-tuple and $(2 N-2 m)$-tuple correlators

