Multiplicity dependence study and role of MPIs on J/ Ψ production in p+p collisions at \sqrt{s} = 13 TeV using PYTHIA8

Suman Deb Indian Institute of Technology Indore, India

Flash Talk, 3rd Heavy Flavour Meet 2019

(Phys.Rev. D97 (2018) no.9, 094002, arXiv:1808.01841)

Multiplicity dependence study and role of MPIs on J/Ψ production in p + p collisions at $\sqrt{s} = 13$ TeV using PYTHIA8

Suman Deb*, Dhananjaya Thakur*, Sudipan De*, Raghunath Sahoo*,Souyma Dansana[†]

*Indian Institute of Technology Indore, Simrol, India Indian Institute of Science Education and Research, Kolkata, India

Introduction and motivation

In inelastic p+p collisions, the interaction objects are patrons. In a single p+p collisions, a large number of interaction of partons occurs in parallel which is called as multi-parton interactions (MPIs)[1]. If the interaction involves large p_T transfer, the semihard interaction multiple interactions of partons lead to the production of heavy particles like J/Ψ.

- Recently, ALICE has observed that the relative J/Ψ yield increases nearly linearly with charged particle multiplicity in p + p collisions (Fig1).
 - Is the behaviour solely due to MPI at the partonic level or it has some contribution from CR at the final state:
 - What will be the energy dependence behaviour of MPI and CR?
 How do the higher states of charmonium behave?

 - ♦ What is the contribution of quark/gluons with multiplicity?
 - Is there any J/Ψ kind of suppression be seen?
- 3. As PYTHIA8 well explains the trends up to $\frac{dN_{ch}}{d\eta} < dN_{ch} / d\eta >$ ~ 4.5, we have tried to study the multiplicity dependence and

the contribution of $gg \to c\bar{c}$ and $q\bar{q} \to c\bar{c}$ toward J/ Ψ production using pQCD inspired model (PYTHIA8).

- The J/Ψ relative yield increases linearly with charged particle multiplicity
 - The hard-MPIs increase with centre of mass energy and is more significant for higher
- To get a qualitative idea, it is fitted with a phenomenological function $f(x) = A x^n$. Here "n" indicates the rate of increase of relative J/ψ yield
- n-parameter is plotted versus multiplicity. It is found that n is negative for N_{ch} < 20 and is positive for $N_{\odot} > 20$
- N_{ch} ≈ 20 is the threshold number of charged particle multiplicity in the final state for substantial MPI effects on the charmonium
- Color reconnection has more contribution to J/Ψ production at higher multiplicities as well as
- reveals that final state effects have little contribution to J/ψ production and it may be from the hard MPIs

- $\langle p_T^2 \rangle_{\rho_W}$ < p_T >_MB ◆ MPI drives the J/Ψ production with little effect of CR in pp@LHC energie From ,> study, it is found that qq → cc̄ dominates over qq̄ towards high multiplicities.

multiplicity

suppression

rpp trends shows that even at high centre-of-mass energy of pp collisions, regeneration is negligible and almost all the measured J/4 are produced from initial hard processes

To understand the Possibility of system formation in high-multiplicity events for pp@13 TeV, we define

For p_T < 2 GeV/c, Rpp shows 10%</p>

There is no suppression observed for R_{cp}

It gives us idea about possible system size in high

Ron shows suppression; the QCD medium formed in high multiplicity

3rd Heavy Flavour Meet 2019 at IIT Indore

9,094002 (2). S. Deb, D. Thakur, S. De and R. Sahoo, arXiv:1808.01841 [hep-ph]

At very high LHC energies, protons are no more a point particle.

At very high LHC energies, protons are no more a point particle.

- ✓ Proton contains partons (quark and gluons)
- ✓ Quark radiates gluons and the gluon density is more at very high energy.
- ✓ Gluon splits in to quark and anti-quarks or a pairs or gluons.
- ✓ At very high energy proton is treated as "Parton distribution"

T. SjÖstrand, M. van Zijl, Phys. ReV. D36 (1987)

At very high LHC energies, protons are no more a point particle.

- ✓ Proton contains partons (quark and gluons)
- ✓ Quark radiates gluons and the gluon density is more at very high energy.
- ✓ Gluon splits in to quark and anti-quarks or a pairs or gluons.
- ✓ At very high energy proton is treated as "Parton distribution"

T. SjÖstrand, M. van Zijl, Phys. ReV. D36 (1987)

Energy

Two interesting questions !!

At very high LHC energies, protons are no more a point particle.

- ✓ Proton contains partons (quark and gluons)
- ✓ Quark radiates gluons and the gluon density is more at very high energy.
- ✓ Gluon splits in to quark and anti-quarks or a pairs or gluons.
- ✓ At very high energy proton is treated as "Parton distribution"

T. SjÖstrand, M. van Zijl, Phys. ReV. D36 (1987)

Energy

Two interesting questions !!

Associated Event activity

- Multipartonic interaction (MPI)
- Color-reconnection
- hadronic activity like

$$q\bar{q} \to c\bar{c} \ gg \to c\bar{c}$$

PHYSICAL REVIEW D96,114019 (2017)

At very high LHC energies, protons are no more a point particle.

- ✓ Proton contains partons (quark and gluons)
- ✓ Quark radiates gluons and the gluon density is more at very high energy.
- √ Gluon splits in to quark and anti-quarks or a pairs or gluons.
- ✓ At very high energy proton is treated as "Parton distribution"

T. SjÖstrand, M. van Zijl, Phys. ReV. D36 (1987)

Energy

Two interesting questions !!

Associated Event activity

- Multipartonic interaction (MPI)
- Color-reconnection
- hadronic activity like

$$q\bar{q} \to c\bar{c} \ gg \to c\bar{c}$$

PHYSICAL REVIEW D96,114019 (2017)

QGP signature in high-multiplicity pp events

- Strangeness enhancement (Nature Physics 13, 535–539 (2017))
- Indication of collective behavior at \$\ssigms s = 0.9\$, 2.76 and 7 TeV.
 (W. Li, et al., CMS Collaboration, J. Phys. G 38 (2011) 124027, V. Khachatryan, et al., CMS Collaboration, JHEP 1009 (2010) 091)
- J/Ψ Suppression?

At very high LHC energies, protons are no more a point particle.

Some of the question can be answered by pQCD inspired model like PYTHIA8, which describes well the multiplicity dependence behaviour of particle production.

Simulating J/Ψ using PYTHIA8

- **❖** Advantages of PYTHIA8 over PYTHIA6 is inclusion of MPI in harder scale
 - Which can produce "c" and "b" quarks via first 2 -> 2 partonic interaction
 - Finite probability of production in subsequent hard interactions
- " 4C Tune" is used, which well explains the charged particle multiplicity in pp@ 7 TeV

(J. High Energy Phys. 03 (2011)032, Phys. Rev. D 95, 014016 (2017))

The detailed about the setting is in back up slide

Simulating J/Ψ using PYTHIA8

- **❖** Advantages of PYTHIA8 over PYTHIA6 is inclusion of MPI in harder scale
 - Which can produce "c" and "b" quarks via first 2 -> 2 partonic interaction
 - Finite probability of production in subsequent hard interactions
- " 4C Tune" is used, which well explains the charged particle multiplicity in pp@ 7 TeV

(J. High Energy Phys. 03 (2011)032, Phys. Rev. D 95, 014016 (2017))

The detailed about the setting is in back up slide

Eur. Phys. J. C77, 392 (2017)

Phys. Lett. B712, 165 (2012)

❖ PYTHIA8 is well explaining the experimental data!

Energy dependence of J/Ψ production

- The J/Ψ relative yield increases linearly with charged particle multiplicity.
- The saturation of relative J/Ψ yield towards higher multiplicity bins needs to be understood.
- The hard-MPIs increase with center-of-mass energy
 - n-parameter vs. N_{ch}

✓negative for N_{ch} < 20</pre>
✓positive for N_{ch} > 20

♦ The event activity beyond N_{ch} ≈ 20 is more prominent to the production of charmonia

✓ "n" indicates the rate of increase of relative J/ Ψ with Vs

Phys.Rev. D97 (2018), 094002)

Effect of color reconnection on J/Ψ production

 Color reconnection has more contribution to J/Ψ production at higher multiplicities as well as higher center of mass energies.

Expected reasons

- ✓ High density of color partons
- ✓ Substantial overlap of color strings in position and momentum space leads to higher probability of color reconnection
- ✓ Partons from two MPIs connect, hence probability of combination of charm and anti-charm quark increases

(Phys.Rev. D97 (2018), 094002)

Conclusion of the study

 \checkmark At the final state, CR has less contribution to J/Ψ production. Most of the J/Ψs are coming from the initial event activity.

Multiplicity dependence of quark/gluon contribution to J/Ψ production

The effect to yield of J/Ψ

- Contribution of gluon to J/Ψ production is little higher compared to contribution of quark.
- Inclusive hardQCD processes is dominant over $gg \to c \bar c$ and $q \bar q \to c \bar c$.
- The contribution of MPI to the J/ Ψ production (semihard J/ ψ) is dominant process and is increasing with multiplicity.

Effect to $\langle p_T \rangle$ of J/Ψ

- The <p_T> of J/ Ψ for inclusive hard QCD processes is less compared to $gg \to c\bar{c}$ and $q\bar{q} \to c\bar{c}$.
- Inclusive hardQCD processes contains semi-hard MPI is lowering the <p_T> of J/Ψ.
- With increase of multiplicity, <p_T> of J/Ψ is increasing, indicates more harder J/Ψs are produced as we go from low multiplicity to high multiplicity.

(arXiv:1808.01841)

Medium modification factor (Rpp/Rcp)

• Medium modification (or biasing to the pp reference) is calculated as:

$$R_{pp} = \frac{< N_{ch}>_{MB}}{< N_{ch}>_{80-170}} \frac{(dN/N_{evt}dp_T)_{80-170}}{(dN/N_{evt}dp_T)_{MB}},$$

$$R_{cp} = \frac{< N_{ch}>_{0-5}}{< N_{ch}>_{80-170}} \frac{(dN/N_{evt}dp_T)_{80-170}}{(dN/N_{evt}dp_T)_{0-5}},$$

- For $p_T < 2.0$ GeV R_{pp} show around 10 % medium modification(or biasing), where as there is no medium modification observed from low-multiplicity to high-multiplicity (Rcp).
- QCD medium formed at high multiplicity p+p collisions is different than MB.

(arXiv:1808.01841)

Summary

- ✓ pp@LHC energies, MPI drives the the quarkonia production with little effect of CR at the final state
- ✓ R_{pp} hinting that the QCD medium formed in high multiplicity p+p collisions is different than that of MB

Thanks !!

Collaborators

D. Thakur, Dr. R. Sahoo, Dr. S De, S. Dansana

Backup Slide

Summary

General settings

- ✓ ISR and FSR are ON for whole analysis
- ✓ MPI with CR and MPI with no-CR are used

Specific Settings

- ✓ Multiparton-Interactions:bProfile=3, to allow all incoming partons to undergo hard and semi-hard interactions
- ✓ ColourReconnection:mode(0), MPI-based scheme of Colour Reconnection
- ✓ HardQCD:all=on, inelastic, non-diffractive component of the total cross section for all hard QCD processes
- \checkmark p_T cut off 0.5 GeV/c is used using PhaseSpace:pTHatMinDiverge, to avoid divergences of QCD processes in the limit p_T \rightarrow 0

Test

Medium modification factor (rpp)

$$r_{pp} = rac{\langle p_T^2
angle_{i^{th}bin}}{\langle p_T^2
angle_{MB}}$$

 \checkmark <p_T²>_{ith-bin} = mean p_T of ith multiplicity bin

$$\checkmark$$
 T²>_{MB} = mean p_T of MB

- <p_T²> attributes toward the multi scattering of partons in the initial state. Hence, can be treated as random walk in transverse momentum space.
- <p_T²> is predicated to increase linearly with the mean path length of the traversed parton.
- At SPS almost all the measured J/ψ are produced via initial hard processes and the increase with centrality/ multiplicity.

(arXiv:1808.01841)