

AT & T Seminar, CERN, 6.12.2018

Properties of Nb₃Sn magnets in the accelerators HiLumi LHC and FCC

René Flükiger

DQMC, University of Geneva and CERN, TE-MSC

A particular thank for the collaboration of

Tiziana Spina, for the work during her PhD thesis
Francesco Cerutti, for the introduction into FLUKA
Christian Scheuerlein and David Richter for the irradiations and measurements at CERN

and

Amalia Ballarino and **Luca Bottura**, for their constant support during the work

Outline

- I. Introduction
- II. What happens in the Nb_3Sn structure during high energy irradiation?
- III. Definition of *dpa* (displacement per atom)
- IV. Expected radiation load in Future Accelerators (HiLumi LHC, FCC)
- V. The irradiation program at CERN
- VI. Radiation damage mechanism in Nb₃Sn A. *dpa, a* «universal» parameter for T_c changes after irradiation B. Effect of irradiation on B_{c2} C. Effect of irradiation on J_c of Nb₃Sn wires

Expected effects in HiLumi-LHC and in FCC

- VII. Remarks about recent progress in Nb₃Sn
- VIII. Conclusions

1. Introduction

The FCC Accelerator

Future Circular Collider (FCC) study: 100-TeV hadron collider in a 100 km long tunnel

Magnetic field in the dipoles: 16 T

Presently envisaged superconductor: Nb₃Sn

1. Required value of $J_c = 1'500 \text{ A/mm}^2$ at 16T/4.2K before irradiation (has not yet been reached in industrial Nb₃Sn wires, but very close to it): new challenge !

2. The radiation in FCC will affect the superconducting properties. To compensate them, even higher pristine J_c values are required (will be estimated in this talk)

FLUKA Calculations have been performed at CERN for the values of * the quadrupole/dipole magnets * the dpa values for the magnets in HiLumi LHC and FCC the thickness of the W shield and

The change of superconducting properties presented here are determined assuming the following parameters:

	HiLumi LHC	FCC/Run1	FCC/Run2	Chosen for the
Luminosity	3'000 fb ⁻¹	5'000 fb ⁻¹	30'000 fb ⁻¹	<pre>present estimation</pre>
Coil ID	150 mm	205 mm	205 mm	estimation
dpa	$2.5 imes10^{-4}$	$5 imes10^{-4}$	3 × 10 ⁻³	
W thickness	6-12 mm	15 mm	55 mm	

II. What happens in the Nb₃Sn structure during high energy irradiation?

High Fluence

Radiation damage: Frenkel pairs

Transfer of the kinetic energy, T, from projectile to the solid and the resulting distribution of target atoms (*displacement cascade*)

The radiation damage event is concluded when the PKA (Primary Knock Atom) comes to rest in the lattice as an interstitial (stage III)

Stable Frenkel pairs (stage III):

- additional pinning centers (higher J_c)
- determine the value of dpa (displacement per atom)

CERN

Time evolution of the radiation damage in a crystal

Time evolution comprises 4 stages:

Incident particle collisions: Primary Knock Atom (PKA), Creation of Frenkel pairs «Thermal spikes» Local melting, cascades, point defects of nm size «Quench»: solidification, creation of stable Point Defects or Defect Clusters «Annealing stage» Thermal diffusion, No new vacancies, but Displacement Collision Sequences

Stable Frenkel defects Mobile Frenkel defects

III. Definition of the *dpa* (displacement of atoms)

Stage IV: Decreasing atomic order parameter

Mechanism: Focusing Displacement Collision Sequence along <102>

A15 structure

Focusing Displacement Collision Sequence <102>

Flukiger, CERN, 6.12.2018

Essential property of dpa: Treatment of multiple sources

$$dpa = \Sigma (dpa)_j$$

j: different energy sources

Evaluation of the damage caused by high energy irradiation on the superconducting properties of Nb_3Sn wires in the magnets of HiLumi-LHC (quadrupoles) and FCC (dipoles) during lifetime

What is known:

Number of total *dpa* (displacement per atom) during lifetime of HiLumi-LHC and FCC

From **FLUKA** MonteCarlo simulations: A. Lechner, F. Cerutti et al. 2014

Tasks: * Determination of the changes dpa vs. T_c and dpa vs. J_c * Evaluate the changes of T_c , B_{c2} and J_c during lifetime

Evaluation of the damage caused by high energy irradiation on the superconducting properties of Nb₃Sn wires in the magnets of HiLumi-LHC (quadrupoles) and FCC (dipoles) during lifetime

What is known:

Number of total *dpa* (displacement per atom) during lifetime of HiLumi-LHC and FCC

From **FLUKA** MonteCarlo simulations: A. Lechner, F. Cerutti et al. 2014

Tasks: * Determination of the changes dpa vs. T_c and dpa vs. J_c * Evaluate the changes of T_c , B_{c2} and J_c during lifetime

IV. Expected radiation load in Future Accelerators: HiLumi LHC, FCC

FLUKA Calculations have been performed at CERN for the values of * the quadrupole/dipole magnets * the dpa values for the magnets in HiLumi LHC and FCC the thickness of the W shield and

The change of superconducting properties presented here are determined assuming the following parameters:

	HiLumi LHC	FCC/Run1	FCC/Run2	Chosen for the
Luminosity	3'000 fb ⁻¹	5'000 fb ⁻¹	30'000 fb ⁻¹	estimation
Coil ID	150 mm	205 mm	205 mm	
dpa	$2.5 imes10^{-4}$	$5 imes10^{-4}$	3 × 10 ⁻³	
W thickness	6-12 mm	15 mm	55 mm	

The Nb₃Sn superconducting magnets in these accelerators will be submitted to high energy irradiation, produced by multiple particles:

In order to describe the cumulated radiation damage, these individual quantities have to be replaced by a more general quantity: the number of displacements per atom, or *dpa*.

dpa = Σ (dpa)_i

dpa: appropriate parameter for irradiation by multiple sources in accelerators

Remarks: radiation induced effects in accelerator magnets

All magnet components are sensitive to radiation effects. However, their importance differs for the various materials:

	Material	Reversibility	Remarks
1.	Insulator	Irreversible	Most sensitive part to high energy irradiation
2.	Cu stabilization	≥ 90% reversible at 300 k	K High initial RRR required
3.	Nb ₃ Sn wires	Irreversible at 300K	Only reversible at ≥700°C: not suitable for magnets

Nb₃Sn wires: No recovery at 300K: The initial values of T_c , B_{c2} and J_c of Nb₃Sn wires must be sufficiently high to fulfill stability requirements, even after irradiation during the whole lifetime (10 years and more)

Contribution of neutrons and charged particles to dpa of HL-LHC and FCC

	HiLumi LHC	FCC/Run1	FCC/Run2
Neutrons	~ 70 %	~ 80 %	~ 90 %
Charged particles	~ 30%	~ 20 %	~ 10 %

Neutron contribution for FCC/Run 2 is as high as 90%! However, protons cause a 10 x higher radiation damage on J_c than neutrons (thus higher dpa values):

The effect of protons must in any case be taken into account

dpa values for various accelerator types

T. Spina, R. Flükiger et al., to be published

Comparison : neutron and proton irradiation fluences

Example: particle spectra acting on quadrupoles (HiLumi LHC)

Where can the Nb₃Sn wires in preliminary studies be irradiated under conditions approaching those in accelerators?

Neutrons: ATI (Atominstitut) in Vienna (Austria): E > 0.1 MeV Protons: Kurchatov Institute, Moscow: E =12 – 32 MeV Cyclotron, Louvain la Neuve, Belgium; E = 63 MeV CERN, IRRAD1 (PS beam), E= 24 GeV

The Neutron Energy spectra in various reactors

Irradiation at various proton energies, covering the proton spectrum Example: Q2a Quadrupole of HiLumi LHC

24 GeV protons IRRAD1 (PSbeam),CERN
1.4 GeV protons, ISOLDE (booster beam), CERN

65 MeV protons, Cyclotron of University Louvain Ia Neuve, Belgium

10 - 30 MeV protons, Cyclotron of Kurchatov Moscow (Russia)

V. The irradiation research program at CERN

Comprises both: Nb₃Sn wires and Nb₃Sn bulk samples

The Irradiation Program at CERN

Same set of Nb₃Sn wires

Industrial Nb₃Sn wires for the CERN irradiation study

Characterization of the Nb₃Sn wires (at 12 T)

Wire	Diameter (mm)	Туре)	Sub- elements	Twist pitch (mm)	T _c (K)	J _{c,A15} at 4.2K/12 T (A/mm²)
#7419	0.8	RRP+	Ta	54	`12 ´	17.84	4843
#0904	1.0	PIT+ <mark>1</mark>	Га	192	24	17.93	3930
#11976	0.8	RRP+	Ti	108	14	17.44	4135
#63468	1.25	IT		246	55	17.16	2057

Annealing conditions: #7419: 695 °C/17 h, #0904: 625 °C/250 h, #11976: 210 °C/48 h + 400 °C/48 h + 665 °C/50 h, #63468: 215°C/24 h + 340°C/24 h + 400°C/24 h + 645 °C/50 h

Characterization of the bulk Nb₃Sn samples (Kurchatov)

$Nb_3Sn platelets: d = 0.090 - 0.15 mm$ Nb₃Sn melted under 2 kbar at UniGe Cut by spark erosion Polished Flash annealed to remove stresses 16000 Powder Nb₃Sn #4 @25at%Sn Mag = 5.19 K X 13000 EHT = 20.00 kV Date :6 Dec 2013 Bragg R-factor: 4.04 10 µm $\chi^2 = 2.11$ 10000 7000 > 98% single phase 4000 1000 Nb₃Sn NbO -R. Flükiger et al, SuST 30,101979 (2017) 10 30 50 70 110 90 130 20 (°)

VI. Radiation damage mechanism in Nb₃Sn

VI.A. dpa: «Universal» parameter for the change of T_c

The A15 crystal structure of Nb₃Sn

The long-range atomic order parameter S: occupation of the atomic sites

Atomic ordering and T_c in Nb₃Sn

S: Atomic order parameter: indicates occupation of the Nb sites in the A15 structure

The dependence of T_c vs. fluence ϕt is directly correlated to the variation $T_c = T_c(S)$

R. Flükiger et al, SuST 30,101979 (2017)

 T_c/T_{c0} vs. S very similar, for both, neutron and proton irradiation

The dependence T_c vs. ϕt : literature results

In the region of interest for accelerators, $T_c vs. \phi t$ is linear. It reflects the damage energy of the incident particle.

Neutron and proton irradiation

Different PROJECTILES (protons, neutrons) and ENERGIES

Protons: T. Spina et al, IEEE Trans.Appl.Supercond., 25,6000505 (2015) Neutrons: T Baumgartner et al., Supercond. Science and Technol., 27,1(2014)

For a given value of dpa the decrease of T_c is the same regardless of the type of projectile and the different energy during irradiation.

«Universal relation» between T_c and dpa

The dependence T_c vs. ϕt for protons and neutrons

For binary Nb₃Sn, each *dpa* corresponds to one value of T_c

Linear variation of T_c vs. ft : reflects the damage energy of the incident particle it is now possible to compare the data obtained with very different reactors.

Determination of ΔT_c for FCC/Run2 for **binary** Nb₃Sn

FCC/Run2: dpa = 3×10^{-3} $\longrightarrow \Delta T_c$

Recent result: For binary Nb₃Sn, there is a direct correlation between T_c and *dpa* (or protons and neutron irradiation)

Situation in alloyed Nb₃Sn?

38

Difference between binary and alloyed Nb₃Sn

In accelerators, only alloyed Nb₃Sn wires will be used.

Binary : Nb_3Sn Alloyed: $(Nb_{1-x}Ti_x)_3Sn$ or $(Nb_{1-x}Ta_x)_3(Sn_{1-y}Ta_y)$

A given fluence ϕt corresponds to a value of *dpa*:

 N_d : Number of displacements per cascade vs. the damage energy $E_d \sigma$: Scattering cross section

Small amount of alloy Ta or Ti (\leq 3 %), the *dpa* at a given fluence is very similar for binary and ternary alloyed Nb₃Sn.

However, binary and alloyed Nb₃Sn samples with the same *dpa* do not exhibit the same value of T_c .

This is illustrated by the known values of $T_{\rm c}$ vs. ϕt

dpa values for binary and alloyed Nb₃Sn wires

After irradiation at a given fluence ϕt , dpa for binary and alloyed Nb₃Sn wires is essentially the same, but a certain difference ΔT_c still subsists.

Data from two reactors: ATI: >0.1 MeV RTNS-II: 14 MeV

Stronger decrease of T_c for alloyed Nb₃Sn wires

E = 14 MeV:

*P.A Hahn, M.W. Guinan, I. T. Summers, T. Okada, D.B. Smathers, J. Nucl. Mater., <u>179</u>, 1127 (1991)
*F. Weiss, R. Flükiger, W. Maurer, et al., IEEE Trans Magn., MAG 23, 976 (1987)

E > 0.1 MeV:

*M. Eisterer, T. Baumgartner et al., ICMC 2017 *Flükiger et al., IEEE Trans. Appl. Supercond., 23, 8001404 (2013)

Determination of ΔT_c **for alloyed Nb**₃**Sn wires**

FCC/Run2: Binary Nb₃Sn: $\Delta T = -1.3 \text{ K} \pm 0.2 \text{ K}$

VI.B: Effect of Irradiation on B_{c2}

Upper critical field after irradiation

Small number of investigations, lead to the same result $\Delta B_{c2} \sim +1 T$

F. Weiss, R. Flükiger, W. Maurer, et al., IEEE Trans Magn., MAG 23, 976 (1987) T. Baumgartner, M. Eisterer, H.W. Weber, R. Flükiger, C. Scheuerlein, L. Bottura, SuST, 27, 015005 (2014)

We have experimentally proven by independent measurements that

- The transition temperature **T**_c,
- the order parameter **S** and
- the lattice parameter a

of Nb₃Sn depend only on the number of Frenkel pairs N_F , and thus of dpa.

 T_c and S and are directly correlated, this constitutes an additional proof!

The prediction of these three quantities in future accelerators can be performed with a good precision.

<u>What about *J*</u>_c?

As expected, the prediction of J_c vs. *dpa* shows a considerably higher uncertainty, but a prediction can be done within certain limits

VI.C: Effect of Irradiation on J_c

Before irradiation:

Intergrain boundaries between neighbouring A15 grains

Boundary between Nb₃Sn grains

Nb₃Sn:

Defects at grain boundaries: breakage of periodicity creates normal conducting regions Vortices will pin the flux lines

4 nm: ~ Coherence length ξ_{o}

J_c in binary and alloyed Nb₃Sn

Two kinds of irradiation/measurement cycles have been applied:

Only one irradiation: each wire undergoes only one Irradiation/measurement cycle (All data before 2013)

H. W. Weber, Int. J. Modern Phys., E 20 (2011)

All known data J_c vs. ϕt show a marked peak. $J_{c,max}$ occurs at different fluences for binary and alloyed Nb₃Sn **Repeated irradiation**: The same wire is submitted to all irradiation/measurement cycles (Measurements at ATI, after 2013)

M. Eisterer et al., ongoing work

Current results at ATI: no clear peak. Is there diffusion at 300 K, after irradiation? Answer later in this talk

Irradiation: Larger enhancement of J_c/J_{c0} at higher fields

T. Spina, C. Scheuerlein, D. Richter, L. Bottura, A. Ballarino, R. Flükiger, J. Physics: Conference Series, 507, 022035 (2014)

Shift of the maximum F_{p,max} after irradiation

Proton irradiation:

T. Spina et al., IEEE Trans. Appl. Supercond.,, 25, 6000505 (2015)

What is the nature of the enhancement of J_c after irradiation?

The two-mechanism model

Separation of contributions due to grain boundary and to point pinning:

T. Baumgartner, M. Eisterer, H. Weber, R. Flükiger, B. Bordini, L. Bottura, C. Scheuerlein, *SuST*, 27, 1, 2014

Flukiger, CERN, 6.12.2018

Origin of the enhancement of J_c after irradiation

The variation ΔB_{c2} is not sufficient for explaining the increase of J_c (Brown, 1976; Colucci 1977, Fähnle 1977, Baumgartner, 2016)

Mechanisms leading to new pinning centers (additional to grain boundary pinning):

- * Observation of defect clusters (Pande 1978)
- * Observation of dislocation loops (H. Meier-Hirmer, H. Küpfer, J. Nucl. Mater., 108, 593 (1982)

 Are defect clusters or dislocation loops responsible for the radiation-induced effects on J_c?
 * Are there other effects?

More research is needed to fully answer these questions

Estimation of the changes in FCC/Run2 at dpa = 3 x 10⁻³

Change of T_c for $dpa = 3 \times 10^{-3}$ value is extracted from the relationship between T_c and dpa

R. Flükiger et al., SuST, 30, 101979 (2017)

«Universal» behavior for neutrons and protons

$$dpa = 3 \times 10^{-3}$$
: $\Delta T_c = 1.3 \pm 0.2 \text{ K}$

Two estimations, based on earlier 14 MeV irradiations: A: Weiss et al, 1987, B: Hahn et al., 1991

It is expected that the «universal» behavior is also valid for other particles: This question is being studied Flukiger, CERN, 6.12.2018 52

A. First estimation:

Based on T_c vs. ϕt , 14 MeV neutron data on 19-core Nb₃Sn wires (resistive J_c measurements up to 20 T):

F. Weiss W. Maurer, R. Flükiger, P.A. Hahn, M. Guinan, et al., IEEE Trans. Magn., MAG-23, 976 (1987)

1st step: find T_c from dpa = 3x10⁻³
 2nd step: find corresponding dpa for 14MeV neutrons
 → dpa value for FCC/Run2:
 Φt(14 MeV) = 1.3 x10²²n/m²

Estimation of the changes in FCC/Run2, with $dpa = 3 \times 10^{-3}$

3rd step:

Find J_c and B_{c2} for the corresponding fluence at 14 MeV: 1.3 x 10²² n/m²

F. Weiss et al, 1987

Estimation of the changes in FCC/Run2, *dpa* = 3 x 10⁻³

B: Second estimation: Based on T_c vs. ϕt , 14 MeV neutron data on 19-core Nb₃Sn wires (resistive J_c measurements up to 20 T)

P.A. Hahn, M.W. Guinan, L.T. Summers, T. Okada, D.B. Smathers, J. Nucl. Materials, 179-181, 1127 (1991)

How will J_c vary with higher ϕt in TRIGA?

TRIGA in Vienna is at present the only easily available neutron reactor

We have seen earlier that $dpa = 3 \times 10^{-3}$ for FCC/2 corresponds to a fluence of 4.3 x 10^{22} n/m² (E> 0.1 MeV):

This allows to conclude about the reversibility of J_c at cycles between T_{irr} and 300K:

Expected behavior of J_c in Nb₃Sn wires in TRIGA

For E > 0.1 MeV: $\phi t = 4.3 \times 10^{22} \text{ n/m}^2$ corresponds to $dpa = 4.3 \times 10^{-3}$.

At *dpa* = 4.3 x 10⁻³, dpa values are well beyond the maximum of J_c vs. ϕ t curves for E > 0.1 MeV: this is comparable to all previous literature data

M. Eisterer, T. Baumgartner et al., ICMC 2017

Starting from the data with E = 14 MeV, the data for higher fluence at E > 0.1 MeV can be predicted

1x10²² n/m² : dpa = 1 x 10⁻³

General behavior of J_c/J_{c0} with decreasing T_c

VII. Remarks about recent progresses in J_c of Nb₃Sn

Will Nb₃Sn reach the required properties at 16 T ?

- As mentioned in this talk, Nb₃Sn industrial wires should even overcome the limit of 1'500 A/mm² at 16T/4.2K, due to radiation damage, and possibly also due to stress effects.
- There have been 2 very recent developments which show that Nb₃Sn has still a potential for a sizeable increase:
- 1: Internal oxydation (X. Xu et al., OSU, Columbus, Ohio), and 2: Nb₃Sn with Hf + Zr (S. Balachandran et al., NHMFL Tallahassee, FL)
- Both groups conclude that their developments may lead to non-Cu considerable above 2'000 A/mm2.
- Jc What should we expect from these wires after irradiation?

Recent progress in Nb₃Sn with Zr + Hf additives

- S. Balachandran et al. (group of D. Larbalestier): ArXiv 2018 Enhancement of $J_{\rm c}$ and $B_{\rm c2}$ by two effects:
 - 1. Substitution (by Ti)
 - 2. Grain size reduction (attributed to Hf)

Shift of $J_c(max)$ towards higher values of $b = B_{c2}/B_{c20}$: Additional point pinning (defect clusters?) Also observed for Internal Oxidation

For irradiation: 1: Grain boundary pinning unchanged 2: Enhancement due to point pinning: additive? To be analyzed

Recent progress in Nb₃Sn with Zr + Hf additives

Common point:

In both cases, Internal Oxidation and Hf +Zr additives, the enhancement of J_c is due to 2 effects: Grain boundary pinning + Point pinning (the details of point pinning have still to be elucidated)

Conclusions

- The change of T_c and J_c in Nb₃Sn after irradiation with multiple sources can be described by the parameter: *dpa* (displacement per atom)
- *T*_c is governed by the mobile Frenkel defects 6c-vacancy/interstitial (in the chains)
- The change of T_c and J_c after irradiation follows a different mechanism
- Based on the present considerations, the change of the superconducting properties in the 3 types of accelerators studied here is estimated

Changes at 4.2 K ΔT_c	HiLumi LHC	FCC/Run1	FCC/Run2
	< - 0.20 K	< - 0.40 K	- 1.8 ± 0.2 K
ΔJ _c	≤ + 30 %	≥ + 60 %	0+ 60 %*)
ΔB _{c2}	< +1 %	< 2 %	- 1.30 T

*) depends on the type of wire

Conclusions (2)

- * More work has to be done for a more precise knowledge of the behavior of the industrial wires which are foreseen for future accelerators:
- * For a deeper understanding, more properties have to be studied on the same wire (including electrical resistivity, initial slope,....)
- * Irradiations have to be performed on advanced wires using Internal Oxidation and quaternary additives, e.g. Hf +Zr. From the present data, it follows that the higher amount of addition elements (Zr+ Hf) may lead to a decrease of T_c to values slightly below $\Delta T_c = -1.8 \pm 0.2$ K found in the present work.